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ABSTRACT

This paper addresses 2-D mesh-based object tracking and
mesh-based object mosaic construction for synthetic trans-
�guration of deformable video objects with deformable
boundaries in the presence of another occluding object
and/or self-occlusion. In particular, we update the 2-D
triangular mesh model of a video object incrementally to
account for the newly uncovered parts of the object as they
are detected during the tracking process. Then, the mini-
mum number of reference views (still images of a replace-
ment object) needed to perform the synthetic trans�gu-
ration (object replacement and animation) is determined
(depending on the complexity of the motion of the ob-
ject-to-be-replaced), and the trans�guration of the replace-
ment object is accomplished by 2-D mesh-based texture
mapping in between these reference views. The proposed
method is demonstrated by replacing an orange juice bottle
by a cranbery juice bottle in a real video clip.

1. INTRODUCTION

Many multimedia applications, such as augmented real-
ity, bitstream editing and interactive TV, demand object-
based video modeling and manipulation. Synthetic object
trans�guration refers to replacing an image object in a real
video clip with a synthetic and/or natural object via digi-
tal post-processing. Successful trans�guration requires ac-
curate tracking of the boundary, local motion and intensity
(contrast and brightness) variations of the image object that
is to be replaced.
Existing methods for object tracking can be broadly clas-

si�ed as boundary (and thus shape) tracking, [1, 2], and re-
gion tracking methods, [3, 4]. However, none of the above
boundary or region tracking methods address tracking the
local motion of the object. Local deformations within an
region may be estimated by means of dense motion esti-
mation or 2-D mesh-based representations. Prior work in
mesh-based motion estimation and compensation includes
[5, 6, 7]. These methods however, do not address tracking of
an arbitrary object in the scene, since they treat the whole
frame as the object of interest.
This paper addresses 2-D mesh-based tracking and trans-

�guration of deformable objects with deformable bound-
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aries in the presence of another occluding object and/or
self-occlusion. It extents the prior work by the authors
[8, 9, 10]. In [8], the boundary of the object was mod-
eled by a polygon with a small number of vertices, and
the interior of the object was modeled by a uniform mesh
under the \mild deformation" assumption which did not al-
low for occlusions or signi�cant deformations of the object
boundary. We attempt to release these restrictions in [9],
where the boundary of the object is modeled by an active
contour [1] to better track its deformations (e.g., an ob-
ject undergoing out-of-plane rotation); and improved mo-
tion estimation and triangulation methods are employed to
allow for possible occluding objects and/or self-occlusion
(e.g., covered/uncovered regions). However, tracking de-
�ciencies have been observed around occlusion boundaries
of fast moving objects. In particular, if an occluding ob-
ject splits the object-to-be-tracked into multiple pieces by
partially covering it, the relationship between the multiple
pieces is lost. In order to address this problem, we de-
veloped an improved mesh-based tracking method in [10],
which constructs a mesh-mosaic of the object as the object
is being tracked. This is accomplished by updating the 2-
D triangular mesh to incrementally append the uncovered
parts of the object as they are detected during the tracking
process.

In this paper, we employ the mesh-based object mosaic
constructed as described in [10] for the purpose of synthet-
ically trans�guring a replacement object in place of the ac-
tual object being tracked. Once the tracking is performed
and object mosaic is created, the minimum number of views
of the replacement object needed for trans�guration is de-
termined, and a replacement object mosaic is constructed
from these views. The replacement object mosaic is then
used for creating a new video clip where the replacement
object goes through the same motion as the object to be
replaced. Section 2 summarizes the algorithm for tracking
and object mosaic construction. The details of the trans-
�guration of the replacement object are described in Sec-
tion 3. We demonstrate the tracking and trans�guration
performance of the proposed methods on a rotating bottle
sequence in Section 4.

2. OBJECT TRACKING AND MOSAIC

CONSTRUCTION

We assume that the user manually selects the contour en-
closing the object to be tracked in the �rst frame of the im-



age sequence. This contour is snapped to the actual object
boundary on the �rst frame of the image sequence using en-
ergy minimization [10]. A content-based adaptive mesh [11]
is then �t inside the contour. This mesh is called the \refer-
ence mesh." Image region in the �rst frame covered by the
reference mesh is taken as the initial \object mosaic." At
each frame, the image region covered by the mesh on that
frame is assumed to be the warped and/or occluded version
of the object mosaic. The mosaicking technique proposed
in [10] and reviewed below is more general than those given
in [12] because it allows for (i) local motion as opposed to
global transformations of the object and (ii) out-of-plane
rotations of the object that result in self-occlusions. Given
the reference mesh and the initial object mosaic, the follow-
ing steps are carried out to track and construct the object
mosaic:

1. Find the object-to-be-covered (OTBC) regions in the
current frame and the covered parts of the object mo-
saic: Estimate forward dense motion �eld inside the
object boundary in the current frame. Use forward
dense motion �eld to compute the Displaced Frame Dif-
ference (DFD) within the object boundary and thresh-
old to obtain the OTBC regions. Map these regions
back to object mosaic using the a�ne transformations
between the reference mesh and the current mesh to
update the covered parts of the object mosaic.

2. Predict the mesh in the next frame: The nodes of the
current mesh which do not fall inside OTBC regions in
the current and/or previous frames are moved to the
next frame by sampling the dense motion �eld. We
refer to these nodes as visible nodes. The location of the
all other nodes, which are called occluded nodes, in the
next frame are predicted by looking to node location
histories and �tting an a�ne motion trajectory model
in the least square sense. The mesh reconstructed in
the next frame is called the predicted mesh.

3. Find uncovered object (UO) regions in the next frame:
All uncovered parts of the object mosaic are warped
into next frame to estimate the boundary of the ob-
ject in the next frame. This boundary is then snapped
to nearby image edges. The image regions inside the
snapped boundary but outside the predicted boundary
are identi�ed as the UO regions.

4. Update the reference mesh and the predicted mesh on
the next frame: Given the UO regions, the visible
boundary nodes of the predicted mesh are pulled onto
object boundary such that their new location mini-
mizes a prede�ned cost function. Every visible bound-
ary node that fall outside the object boundary is pulled
to the nearest point on the boundary. On the other
hand, every visible boundary node that fall inside the
object boundary is pulled to a point on the boundary
such that (i) the node is close to its previous position,
and (ii) the distance between the points which are ob-
tained by mapping the node into the object mosaic by
the a�ne mappings of the triangles where the node is
a vertex of the triangles is minimum. Use one of the
these a�ne mappings to predict the new location of
the boundary node in the object mosaic. If the area

of a patch with at least one vertex being a boundary
node gets larger than a prede�ned threshold, then it is
divided into smaller patches.

5. Update the object mosaic: Use the constrained Hexag-
onal Search discussed in [8], to re�ne the boundary
nodes of the reference mesh and the inside nodes of
the predicted mesh to form an updated mesh such that
the intensity prediction error within the object bound-
ary in the next frame is minimized. Given the re�ned
reference mesh and the updated mesh the intensity dis-
tribution within UO regions are warped into the object
mosaic.

3. SYNTHETIC TRANSFIGURATION

Given the object mosaic and the reference and updated
meshes for every frame in the image sequence, we construct
a set for every pixel in the object mosaic from the indices of
the frames where the pixel is visible. Let M and N denote
the number of pixels in the object mosaic and the number
of frames in the image sequence, respectively. Also let Sm
denote the index set obtained for themth pixel in the object
mosaic. Initially, we label all the pixels in the object mosaic
as unmarked. We then pick the �rst frame to be the �rst
view and relabel all pixels m in the object mosaic as used if
1 2 Sm. The following steps are carried out to relabel the
remaining unmarked pixels in the object mosaic and hence
to determine the views to be used for trans�guration:

1. Obtain a sequence an; n = 1; � � � ;N of numbers, where
an denotes the number of unmarked pixels in the object
mosaic that come from the nth frame.

2. Find the maximum of an; n = 1; � � � ;N , and let ap
denote this maximum.

3. If ap is greater than a prede�ned threshold then select
pth frame as the next view and relabel all pixels m in
the object mosaic as used if p 2 Sm, and go to Step 1.
Otherwise stop.

The user is assumed to have the still images of the re-
placement object at the views obtained above. We further
assume that a global spatial transformation between the
replacement object and the object to be replaced in each
view can be found. Using these transformations, the up-
dated mesh in each view is mapped onto the replacement
object in the corresponding view. Then, the views of the
replacement object are warped into the object mosaic to
create the replacement object mosaic. The intensity value
of every unmarked pixel on the object mosaic is spatially
interpolated from the neighboring used pixels. Finally, the
replacement object mosaic is used for rendering the motion
of the object to be replaced in every frame of the given
image sequence to achieve its trans�guration.

4. RESULTS

We demonstrate the performance of the proposed approach
in the case of self occlusion due to out-of-plane rotation of
the object-to-be-tracked. The test sequence is called \Ro-
tating Orange Juice Bottle" and is recorded by a rigid Hi-8
mm comsumer camcorder and contains a rotating object in



front of a stationary background. We held the camera sta-
tionary and let the bottle rotate. Interlace-to-progressive
conversion of the sequence is done by spatially interpolat-
ing the even �elds to frame resolution (300 lines by 330
pixels). The sequence is very noisy and due to the trans-
parent nature of the object and the background colors, the
information on the bottle to be tracked is low in contrast.
Therefore we have provided the object/background segmen-
tation in each frame of the video clip as an input to our
tracking/mosaicking algorithm. The proposed algorithm is
tested on the �rst 10 frames of the sequence. The original
frames 1; 4; 7, and 10 of the sequence are provided in raster
scan order in Fig. 1. In Fig. 2, we show the tracked meshes
overlaid on the same frames 1; 4; 7, and 10 in raster scan
order. The algorithm decribed in Section 3 selected the 1st
and the 10th frames of the sequence as the views to recon-
struct the whole sequence which are given in Fig. 1. The
static mosaic object created after the 10th frame of the se-
quence and reconstructed frames 4; 7, and 10 are displayed
in Fig. 3. Since we �nd the index sets for every pixel in the
object mosaic we know which pixels on the object mosaic
are visible in frames 1 and/or 10. We use this information
to enhance the quality of the texture mapping and map the
intensities of frames 1 or 10 onto each object in the sequence
to obtain the intensity of the object.

We then shoot a video clip of the cranberry juice bot-
tle with the same camcorder from a similar perspective as
the bottle is manually rotated in a similar way as the or-
ange juice bottle. We identify a frame in this sequence
that matches the �rst frame of the orange juice bottle se-
quence in perspective and outline the boundary of the bot-
tle. Then, perpective transformation parameters are calcu-
lated between the boundaries of the two bottles in those two
corresponding frames. The texture of the cranberry juice
bottle object is mapped onto the orange juice bottle object
in frame 1 using the computed transformation parameters.
The same steps are carried out for the frame 10 of the orange
juice bottle sequence and its matching frame in the cran-
berry sequence to obtain the corresponding texture map for
the frame 10 of the orange juice bottle replacing it with the
cranberry juice bottle. Using the two corresponding tex-
ture maps for frames 1 and 10 of the orange juice bottle
sequence, a rotating cranberry juice bottle with the same
motion as the orange juice bottle is reconstructed. In Fig. 4
we show the frames 1; 4; 7, and 10 of the trans�guration se-
quence in raster scan order.

5. CONCLUSIONS

It is clear that the visual quality of the synthetically trans-
�gured video objects strongly depends on the accuracy of
tracking of the actual video object to be replaced. The num-
ber of views (still images) of the replacement object needed
for trans�guration depends on the complexity of the motion
of the video object-to-be-replaced. When there are newly
uncovered regions within the frames of interest, due to the
motion of the video object (e.g., out-of-plane rotations), we
need multiple views of the replacement object which shows
all the texture of the replacement object needed to perform
the trans�guration. The algorithm presented in this pa-
per determines and employs the minimum number of views

necessary for trans�guration. Note also that, if the tracking
is lost due to the complexity of the object motion, a view
of the replacement object similar to that of the object-to-
be-replaced at the frame where tracking is lost would be
needed to reinitialize the process. In the example shown
above, this was not needed as the tracking of the video ob-
ject was satisfactory.
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