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ABSTRACT

We present an improved object tracking algorithm in the
context of spatio-temporal segmentation. By incorporat-
ing invariants for the spatial characterization, the informa-
tion supplied by the tracking algorithm to the current seg-
mentation is extended from a purely temporal to a more
comprehensive spatio—temporal description of the objects
in the scene. Thereby, the extraction and the tracking of
meaningful objects in video sequences is enhanced. The
proposed spatial characterization is shown to be efficiently
implementable due to the additivity in feature space of the
chosen class of invariants.

1. INTRODUCTION

This paper addresses the problem of automatically de-
tecting and tracking arbitrary objects in video sequences.
The spatio-temporal segmentation has proven to provide a
reliable means of completely decomposing dynamic scenes
into their constituent objects [1, 3]. Since it usually uses
only the preceding and the current frame of a sequence to
partition the latter, tracking has to be applied to assure the
coherence and stability of the segmentation through time.

We propose in this work an improved tracking algorithm.
It is derived from the approach described in [2, 4] which
divides the tracking into two distinct steps. In the first
step, information about the objects in previous frames is
gathered and supplied to the current segmentation process.
In the second step, the objects in the current frame are
linked to the corresponding ones in previous frames.

We focus here on improving the first step. The spatio—
temporal segmentation employed for the decomposition of
the sequence is based on a region merging approach. The
regions of an initial partition of the current frame are ite-
ratively combined to meaningful groups. These groups are
then regarded as objects [1, 3]. Two regions are likely to be
merged into the same object if their spatio-temporal simi-
larity is high. The proposed measure of similarity considers
information from previous frames to stabilize the partition
of the sequence through time.

To measure this similarity, the tracking algorithm pre-
sented in [2, 4] exploits temporal information only in the
form of a prediction of each object’s position in the current
frame. Thus, the region merging becomes unreliable due to
the generally error—prone motion estimation.
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In this paper, we propose a similarity measure based on
the characterization of objects by invariant features. This
method allows us to exploit spatial information relative to
previous frames while segmenting the current one. The cal-
culation of this similarity measure is divided into two suc-
cessive steps.

In the first step, a searching algorithm determines the
combinations of regions in the current frame which best
match the objects in previous frames with respect to their
invariants.

In the second step, pairs of regions which are contained
in the same combination are attributed a high similarity,
whereas pairs whose elements belong to different combina-
tions are set to lower similarity. This mechanism proves
more robust than simply directly merging all regions that
are grouped in a well matched combination. Besides, this
similarity measure can be integrated into the tracking algo-
rithm, in order to combine spatial and temporal information
from previous frames. Finally, this approach is less sensi-
tive to noisy measurements of the invariants, as shown in
the example in Section 5.

This paper is structured as follows. The selected class of
invariants and related properties are summarized in Section
2. Section 3 presents the search algorithm, and Section 4
describes the computation of the similarity measure. Expe-
rimental results are given in Section 5. Eventually, Section
6 draws some conclusions.

2. INVARIANT FEATURES

Invariant features provide a spatial characterization of obj-
ects which remains unchanged under the action of certain
transformation groups. In [6], a class of invariants for grey
scale images is proposed which allows, in contrast to the pre-
dominantly used moment invariants such as [9], an efficient
computation of the features of combinations of regions. It
is constructed by averaging, over the transformation group
of rotations and translations, polynomial functions of the
grey values of images. Features of individual objects are
extracted by restricting the area for which the invariants
are computed to the part of the image that is covered by
the respective object [8].

The polynomials proposed in [7] are used to construct
a set of twelve invariants forming a feature vector for the
spatial characterization of objects. The low order of the
polynomials assures its robustness with respect to noise.
Since a significant deviation of just one invariant already
indicates a major difference in shape or texture between
two objects, we use the infinite norm for comparisons of
feature vectors.

On a spatially discrete grid, the averaging over the consi-
dered transformation group has to be approximated. A sum



of interpolated values replaces the analytical integration
over the rotation angle and the translation vector. Experi-
mental investigations suggest that the bilinear interpolation
leads, despite its low-pass characteristic, to superior results
in comparison with other simple interpolation techniques
such as the nearest neighbor interpolation. In order to as-
sure uniform accuracy of the features values, the number of
summands considered by the approximation should be ada-
pted to the support size [7] of the employed polynomials.

An invariant feature is said to be additive in the feature
space if its value for the union of two regions is equal to the
sum of its values for the two individual regions. Exact ad-
ditivity is reached for the invariants only when the regions
are separated by more than the maximal support size of the
used polynomials (i.e. the set of pixels on which the poly-
nomials is evaluated don’t overlap). In a segmented image,
however, neighboring regions are not sufficiently separated.
Therefore, only approximated additivity is achieved. The
resulting error accumulates when several regions are com-
bined into one object and thus has to be corrected. This is
achieved by introducing correction terms [5]. They can be
simultaneously calculated with the invariant features of the
individual regions and thereby cause no significant compu-
tational overhead.

The invariance of the introduced features is restricted to
rotational and translational transformations. Since usually
an affine motion model given by
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of objects will only remain unchanged if the affine parame-
ters satisfy
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In practice, these conditions are generally not met if a mo-
vement of the camera occurs. Therefore, the global motion
compensation is first applied. Furthermore, the robustness
of the feature vectors with respect to zoom is improved
by normalizing the invariants for the comparison of spatial
characteristics with the area of the corresponding objects.
The restriction of the invariance to rotations and transla-
tions therefore constitutes no substantial limitation to the
applicability of these features.

3. SEARCHING ALGORITHM

The searching algorithm described in this section tests all
combinations of regions for their spatial similarity with the
reference objects in the previous frame. The theoretical
upper limit for the number of combinations that have to be
tested is given by
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where n denotes the number of regions in the initial se-
gmentation. It corresponds to an exponential computa-
tional complexity O (2") . Even for the rather small values

of n that usually occur in video sequences, a considerable
reduction of the required computation time is necessary.
Hence, the number of tested combinations must be signifi-
cantly reduced and the complexity of the calculation of the
invariants for each combination must be minimized.

The first goal is achieved by only considering neighbo-
ring regions as elements of a combination. For this pur-
pose, the initial segmentation of the frame is represented as
a graph. All allowed combinations on this graph are succes-
sively generated by an iterative algorithm based on a queue
[5]. Their invariant features are compared with those of the
reference objects and the respective best matches are sto-
red in lists. Since the graph usually contains cycles, some
combinations are repeatedly generated. Therefore, we test
whether a generated combination is already included in the
queue or not. The complexity of this test essentially influ-
ences the computation time of the whole algorithm. For
an efficient implementation we propose to use a hash table
which keeps track of the already considered combinations.
In order to access this hash table, the combinations are
represented by a binary code . Simulations have confir-
med that the distribution of C' is adequately smoothed by
a simple hash function H such as

H(C)=Cmod p

where p denotes a prime number chosen dependent on the
expected overall number of combinations.

The second goal is attained by exploiting the property
of additivity in feature space of the chosen class of inva-
riants. The complete recalculation of the features of each
combination would results in an unacceptable computation
time. Therefore, the invariants of the separate regions and
the correction terms are calculated once for all prior to the
start of the search. The features of combinations of regions
are then derived according to
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where ka denotes the invariant vector for the current
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4. SIMILARITY MEASURE

When combinations of regions are matched against the refe-
rence objects in the previous frame, the best match does not
stand out unambiguously with regard to the other combina-
tions (see Table 1 and Sec. 5). Therefore, the result of this
matching is not robust enough for an appropriate segmen-
tation and the subsequent tracking phase. It is therefore
necessary to exploit the information provided not only by
the best, but by a group of most likely combinations. The
basic underlying idea is that a pair of regions that appear
together in most of the top ranked combinations can be as-
signed a very high similarity index, which will very likely
result in their merging.

We propose the following approach to compute the si-
milarity measure. The pairs of regions are searched in the



lists of best matching combinations. If many well-matching
combinations contain both of them, their similarity measure
is increased. If, on the other hand, the regions are often
split in different combinations, the degree of similarity is
decreased.

In order to consider all occurrences of the two regions
and to quantify the similarity measure, we assign suitable
weights to the individual combinations. For this purpose,
the distribution of the normalized invariant features thro-
ugh time is analyzed for each object. We model it by a
Gaussian distribution since the causes of the deviations of
the features are diverse and hard to describe mathemati-
cally. Simulations confirmed the sufficient accuracy of this
model [5].

The normalization of the invariants renders the compa-
rison of spatial characteristics more robust. However, this
introduces ambiguities because some combinations are only
distinguishable by their area. Therefore, the weight as-
signed to a combination should take information about the
area of the regions into account as well.

We propose to weight each combination ¢ with
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where t 4 and ¢; denote the area and a normalized invariant
of t, and pa, pr, 0%, o2 the mean and the variance of
the corresponding distributions, respectively. The selected
invariant is the one which yields the maximal relative error.
The distributions are based on all detected occurrences of
the respective object in previous frames.

The similarity measure for regions i and j is then defined
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where t; represent the combinations of regions.

5. EXPERIMENTAL RESULTS

In this section, experimental results are presented. The in-
vestigated example is taken from the sequence ”Table Ten-
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Figure 1. Final spatio—temporal segmentation of
the preceding frame which contains 4 reference obj-
ects

Figure 1 depicts the final spatio-temporal segmentation
of the preceding frame in which four reference objects have
been defined. These are the background, the bat and hand,
the arm, and the ball.
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Figure 2. Initial segmentation of the current frame
which contains 13 regions

The initial segmentation of the current frame yields thir-
teen regions as shown in Figure 2. Eight of them correspond
to the background and three to the bat and the hand.

In Table 1, the combinations of regions in the current
frame yielding the five best matches for each object are
listed. They are determined by the described searching al-
gorithm. The thirteen regions are displayed in this table
according to their size and the object to which they actu-
ally correspond. The combinations are ordered according
to the maximal relative deviation of their cumulative inva-
riants from the invariants of the corresponding object. A
’1’ indicates that the region is contained in the considered
combination, a ’0’ that it is not.

Combination of regions

Relative Back— Bat, | Aym | Ball
error ground hand
0.00182773 || 11111111 | 000
0.00209014 || 11111110 | 000
Back— 1l g 00361198 || 11111111 | 001
ground || 60365904 || 11111110 | 001
0.00377789 || 11101111 | 000
0.01324284 || 00000000 | 111
0.03807617 || 00000100 | 111

Bat, 1l 0 04794542

00000100 | 110
Hand 1| g 97185463

00000000 110
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0.08567622 || 00000100 101
0.00480967 || 00000000 000
0.69369870 || 00000000 001
Arm 0.97235459 || 00000000 011
1.13118839 || 00000000 010
2.19361901 01000001 011
0.25495994 || 00000000 000
0.50857323 || 00010000 000
Ball 0.68332916 || 00000000 100
0.69472170 || 00000100 100
0.70333320 || 00000000 101

Table 1. Lists of best matching combinations of re-
gions obtained by the proposed searching algorithm
for each of the four reference objects

For all four objects, the best match exactly comprises all
those regions which actually correspond to the respective
object. The table also shows that the second best match
does not always differ from the best significantly in terms
of relative error. On the other hand, it is possible to see at
first glance that the pairs of regions to be merged can be
identified in a fairly reliable and robust way by taking into
account not only the best matches, but for example the 5
best ones, as described in Sec. 4.



I Background | Bat, Hand | Arm | Ball |
1.00 1.00 1.00 0.99 1.00 0.14 1.00 0.24 | -1.00 -1.00 0.28 | -1.00 | -1.00
1.00 1.00 1.00 0.99 1.00 0.14 1.00 0.24 | -1.00 -1.00 0.28 | -1.00 | -1.00
1.00 1.00 1.00 0.99 1.00 0.14 1.00 0.24 | -1.00 -1.00 0.28 | -1.00 | -1.00
Back— 0.99 0.99 0.99 1.00 0.99 0.14 0.99 0.24 | -1.00 -1.00 0.28 | -1.00 | -1.00
ground 1.00 1.00 1.00 0.99 1.00 0.14 1.00 0.24 | -1.00 -1.00 0.28 | -1.00 | -1.00
0.14 0.14 0.14 0.14 0.14 1.00 0.14 -0.29 | -0.25 -0.25 -0.13 | -1.00 | -1.00
1.00 1.00 1.00 0.99 1.00 0.14 1.00 0.24 | -1.00 -1.00 0.28 | -1.00 | -1.00
0.24 0.24 0.24 0.24 0.24 -0.29 0.24 1.00 | -1.00 -1.00 -0.23 | -1.00 | -1.00
ﬂ?at -1.00 -1.00 -1.00 -1.00 -1.00 -0.25 -1.00 -1.00 1.00 0.99 -0.68 | -1.00 | -1.00
and -1.00 -1.00 -1.00 -1.00 -1.00 -0.25 -1.00 -1.00 1.00 0.99 -0.68 | -1.00 | -1.00
0.28 0.28 0.28 0.28 0.28 -0.13 0.28 -0.23 | -0.68 -0.68 1.00 | -1.00 | -1.00
Arm -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 | -1.00 -1.00 -1.00 1.00 | -1.00
Ball -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 | -1.00 -1.00 -1.00 | -1.00 1.00

Table 2. Values of the similarity measure for pairs of regions for the given example

In Table 2, the results of the evaluation of the proposed
similarity measure for the given example are listed. Ideally,
the similarity of two regions which both actually correspond
to the same object should be 1.0 and that of all other pairs
—1.0. This is attained for the arm and the ball. In practice,
however, positive values instead of 1.0 and negative values
instead of —1.0 are usually sufficient. Except for the smal-
lest region of the bat and the hand, this is achieved for all
objects.

6. CONCLUSION

A new similarity measure based on invariant features has
been proposed which increases the robustness of video sequ-
ence segmentation. The proposed measure has been intro-
duced in order to evaluate the probability that pairs of re-
gions, resulting from a segmentation of a frame in a video
sequence, actually belong to the same object and can reaso-
nably be merged into a single region. The measure of simi-
larity depends on the result of a number of tests in which
the invariant features of groups of regions in the current
frame are matched with the features of objects detected in
the previous frames. In order to reduce the computational
complexity, the method exploits the property of additivity
in feature space of the proposed invariant features, which
therefore need to be calculated only once and then added up
to obtain the global values corresponding to combinations
of regions.

The results show that this similarity measure efficien-
tly allows to propagate spatial characteristics of objects
through time. Thereby, the information supplied by the
tracking algorithm to the current segmentation is enriched,
and the resulting decomposition of video sequences is more
coherent.
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