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ABSTRACT

This paper addresses the problem of wire-frame tracking
by accurate analysis of the motion and the shape of the
facial features in head-and-shoulders scenes. Accurate
wire-frame tracking is of paramount importance for
correct reconstruction of the encoded image, especially in
the areas occupied by the lips and the eyes. An entirely
new algorithm for tracking the motion of a semantic
wire-frame (Candide) by analysis of the principal
components of sub-images containing important facial
features of the speaker's face is proposed. This algorithm
is suitable for tracking both global motion (motion of the
speaker’s head) and local motion (motion of the facial
features). The algorithm was tested on numerous head-
and-shoulders sequences with excellent results.

1. INTRODUCTION

Aizawa et al. [1], and Forchheimer and Kronander [2]
suggest that moving image compression techniques based
on semantic models are capable of achieving data-rates
below 10 kbit/s. This would allow real-time video
communication over PSTN lines. The two main problems
in model-based moving image coding are automatic wire-
frame fitting and automatic wire-frame tracking.

Tracking algorithms for semantic-based moving image
coding have been proposed by Li and Forchheimer [3]
who employed optical flow analysis and Kokuer and
Clark [4] who adapted a correlation approach. Our
method is based on the analysis of the principal
components of a set of images and imposes no restrictions
on the amount of motion in the scene.

2. EXPERIMENTAL METHOD

We have concentrated our efforts on tracking the motion
and the shape of the left eye, the right eye, the nose and
the lips. These facial features will be referred to as the

important facial features. Each important facial feature is
tracked separately thus its 2D co-ordinates can be used to
determine the current position of the speakers head. The
algorithm is identical for each important facial feature,
but will be described for the left eye.

Our tracking method is based on principal components
analysis (PCA) and we believe this to be the first attempt
to utilise PCA for motion analysis in model-based coding.
In the first step of the PCA, the eigenvectors of the
covariance matrix S of the sequence X of M, N -
dimensional input column vectors: X = [x1 x2 ... xM], xj =
[x ji], i = 1..N, j = 1.. M, must be found. In our analysis the
input sequence consists of sub-images containing the left
eye of the speaker extracted from M initial frames of the
test sequence (Figure 1). The input sequence of sub-
images (further referred to as the initial set) is converted
into 1D column vectors xj by scanning the image line by
line. An image consisting of R rows and C columns
would therefore produce a column input vector consisting
of N = C × R rows. We obtain the covariance matrix from
the following relationship:

S = YYT (1)

where Y = [y1 y2 ... yM], yj = xj - mx and mx is the
expected value of the sequence X. We can find the i-th
principal component zi of the initial set from the
following equation:

zi = ui
T (xi - m) (2)

where ui is the i-th eigenvector of the covariance matrix
S. Even for small images, the size of the covariance
matrix can be too large to handle by common computing
equipment (e.g. a sequence of images consisting of 50
columns and 50 rows would result in a 502 × 502

covariance matrix). However, if the number of images M
in the sequence X is considerably smaller than the



dimensions of the images themselves (N = C × R), the
above problem can be overcome. According to the
method of singular value decomposition (SVD) [5], the
eigenvectors of the covariance matrix S = YYT can be
expressed as a linear combinations of eigenvectors of a
matrix C = YTY. Since matrix C is M × M, the
computational costs of finding the eigenvectors of the
matrix S are greatly reduced. In our research M < 20 and
N < 50. Thus the problem is reduced to calculations
involving matrices smaller than 20 × 20.

Once the eigenvectors of the covariance matrix S of the
initial set of M sub-images containing the left eye of the
speaker extracted from the M initial frames of the
sequence are calculated, the automatic tracking
commences with frame M +1. The initial position of the
left eye in frame M + 1 (current frame) is assumed to be
the same as in frame M (previous frame). This view is
subsequently verified in the following way. The sub-
images within the search range centred on the initial
position of the left eye in the M +1-th frame are extracted
from the current frame (e.g. for a search range of 15 × 15
we obtain a set of 225 images). These images are referred
to as the extracted set (Figure 1). It is the task of the
algorithm to find the best match image among the images
from the extracted set.

Figure 1: Automatic tracking system

The dimensions of the images from the extracted set are
identical to those from the initial set. Since the images
from the extracted set are similar to those from the initial
set we can assume, that they can be projected onto the
principal components space created by input vector X of
the initial set of images. For this purpose we use equation

(2) with a single modification: the image xi is now the i-
th image from the extracted set, not the initial set. If we
transform this image using the principal components
space created by the input vector X we will obtain certain
image r i. Since the principal components space was
created using the images from the initial set (1), the
Euclidean distance between the xi image and the r i image
will tell us how similar the xi image from the extracted
set is to all the images from the initial set:

di i i= −x r (3)

The i-th image from the extracted set for which the
distance di is minimal, is the best match image. The co-
ordinates of its centre on the M +1-th frame are the co-
ordinates of the left eye of the speaker on the M +1-th
frame. This algorithm is repeated for the remaining
frames of the test sequence and is identical for the
remaining important facial features: the right eye, the lips
and the nose. The distance measure (3) was first proposed
by Turk and Pentland [6].

3. EXPERIMENTAL RESULTS

We have tested our automatic tracking algorithm on
numerous commonly used head-and-shoulders video
sequences: Miss America (352 × 240 pixels, 150 frames),
Claire (360 × 288 pixels, 168 frames), Car Phone (176 ×
144 pixels, 400 frames), Grandma (176 × 144 pixels, 768
frames), Salesman (360 × 288 pixels, 400 frames) and
Trevor (256 × 256 pixels, 100 frames). The track of all
facial features was maintained for all tested sequences.

 

       Figure 2: Miss America           Figure 3: Claire

 

         Figure 4: Grandma            Figure 5: Car phone



 

             Figure 6: Salesman            Figure 7: Trevor

The track was maintained even when the facial features
were partially occluded by the speaker’s hand (Salesman)
or when they radically changed shape (eye close-open,
mouth close-open).
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Figure 8: Miss America: The lips tracking error profile
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Figure 9: Car Phone: The left eye tracking error profile
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Figure 10: Grandma: The nose tracking error profile

Also tracking of the eyes of the subjects wearing glasses
(Grandma, Trevor) was completely successful. The
sequences contained moderate zoom, rotation and
translation. We have created short movies with white
crosses centred on the important facial features for all test
sequences (Figures 2 to 7). These crosses were observed
to track the features with remarkable precision.

However in order to assess the accuracy of the tracking
algorithm, the 2-D positions of the important facial
features were extracted manually from every fifth frame
of the test sequences. The Euclidean distance between the
feature tracked manually and automatically (on every
fifth frame) is a good measure of the accuracy of the
tracking method. Typical error distance profiles for some
of the facial features are presented (Figures 8 to 10).

Facial feature Mean error
[pixels]

Standard deviation
[pixels]

Left eye 0.6 0.7
Right eye 0.8 0.7

Nose 0.6 0.6
Lips 0.5 0.6

Table 1: Tracking results for Miss America

Facial feature Mean error
[pixels]

Standard deviation
[pixels]

Left eye 0.4 0.5
Right eye 0.6 0.7

Nose 0.8 0.6
Lips 1.0 0.6

Table 2: Tracking results for Claire

Facial feature Mean error
[pixels]

Standard deviation
[pixels]

Left eye 0.8 0.8
Right eye 0.8 0.9

Nose 0.9 0.6
Lips 0.7 0.7

Table 3: Tracking results for Trevor

We have also calculated the mean error and standard
deviation for all the tracked facial features. A few typical
results are presented in Tables 1 to 3). As can be seen, the
mean error for all the facial features in all the sequences
was no more than 1 pixel.

Since we wish to utilise the Candide [2] wire-frame, in
order to reconstruct the local motion (e.g. lips close-open,



eyes close-open) we must be able to track reliably the
motion of the vertices assigned to the selected facial
features (Figure 11). We utilised the same algorithm, but
this time the initial set images were centred on the points
of the image that corresponded to the positions of the
wire-frame vertices of a particular facial feature. Again
observation of test video sequences re-created from the
results of the algorithm showed an excellent tracking
performance.

 

Figure 11: Tracking vertices (in circles) of the left eye
(left) and the lips (right)

Figure 12: Tracking of the shape of the facial features

Figure 13: Manipulating the Candide wire-frame

The tracked vertices were subsequently used as anchors
for vertices of the Candide wire-frame model (Figures 12

and 13). Thus the wire-frame model was driven by the
global motion of the speaker’s head and local motion of
the facial features.

4. CONCLUSIONS

We have developed a new and reliable algorithm for
automatically tracking the motion of facial features in
head-and-shoulders scenes. The algorithm is based on
eigenvalue decomposition of sub-images containing
important facial features: the eyes, the nose and the lips.
The algorithm was tested on numerous sequences
containing limited pan, rotation and zoom of the
speaker’s head, with excellent results. Since all the facial
features are tracked independently, the algorithm could
be easily adapted for use on a parallel processing system.
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