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ABSTRACT

Video coding standards use the block-matching algorithm
(BMA) and motion-compensated prediction to reduce tem-
poral redundancies present in image sequences. Block match-
ing is used since it is computationally e�cient and pro-
duces a minimal representation of the motion �eld that is
transmitted as side information. In order to build a ro-
bust coder the motion-estimation technique must be able
to track motion in a noisy source. The approach presented
in this paper uses spatio-temporal motion prediction, pro-
viding an accurate motion estimate even in the presence
of noise. With this approach, noisy sources can be com-
pressed e�ciently and robustly in standard video coders
(e.g., MPEG-1, MPEG-2, H.261, and H.263 [1]) with little
increase in complexity.

1. INTRODUCTION

In order to build a video coder that is robust in the pres-
ence of noise, the motion-estimation process must be able
to track objects within a noisy source. In a noisy source, ob-
jects appear to change from frame to frame because of the
noise, not necessarily as the result of object motion. Track-
ing objects within a noisy environment is di�cult, especially
using the BMA. The motion model used in the BMA algo-
rithm, assumes that frame-to-frame changes occur as the
result of object motion. This assumption no longer holds in
noisy sources. To aid the motion-estimation process in the
presence of noise, motion-vector prediction has been used to
improve the tracking capabilities of the video coder in this
paper. The motion-vector prediction process has been im-
plemented as the linear predictive search (LPS) as reported
in [2].

The LPS uses motion-vector prediction to produce a
crude estimate, v̂b(t), of motion in the current block, vb(t).
Once the motion-vector estimate is computed, a localized
search centered on estimate is performed, that hones in on
the actual motion vector, vb(t). As in the BMA, the mean
absolute di�erence (MAD) matching criteria is used in the
LPS. Previously computed motion vectors in past, present,
or future frames, in a three-dimensional region of support
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(ROS), are used in a predictor that determines a reliable
estimate of the current motion vector,

v̂b(t) =

pX

k=1

�kvb
k
(tk);

where b is the current block, �k is the estimator, p is the
predictor order, and vb

k
(tk) are the previously computed

motion vectors. Further references to the predicted motion
vector will not be indexed by the current block, b, the block
index will be implied in the context.

In Section 2, the LPS algorithm is introduced. In Sec-
tion 3, we examine the LPS algorithm with respect to its
application to robust video coding and compare the behav-
ior of the motion vectors in the full search (FS) and LPS
algorithms. Simulation results using the LPS in the pres-
ence of noise are shown in Section 4. In Section 5, the
conclusions are presented.

2. LINEAR-PREDICTIVE SEARCH

The LPS uses a predicted motion vector, v̂, to bias the
search in the general direction of object motion, as shown
in Figure 1. When the true motion vector v, lies within
the smaller search region, the LPS will result in a motion
vector that is identical to the true motion. When the LPS
algorithm fails, the estimate, v̂, centers the search region in
an area that does not intersect the true motion vector, v.

The computational complexity of the LPS is quite small.
For each motion vector, p multiplies and p � 1 adds must
be computed (where p is the order of the predictor). In the
simulations shown here a 13th order predictor was used.

When the true motion vector v(t), lies within the search
region de�ned by the LPS a motion vector that is identical
to the true motion (as de�ned by the FS) will be found.
When the LPS fails, the estimate, v̂(t), centers the search
region in an area that does not intersect the true motion
vector, v(t). In a real-life coder the computational burden
of motion estimation will require an implementation of the
LPS in conjunction with a fast computation technique.

In Figure 2 the MAD surface1 is shown for the Flower-
Garden sequence. In Figure 2.a the MAD surface is shown

1The MAD surface is a plot where, for each location, (dx; dy),
in the search region, the value of DMAD(dx; dy) is computed.
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Figure 1: Linear Predictive Search Process.

for the full search BMA and the LPS MAD surface is shown
in Figure 2.b. The predictive search has shifted the search
region such that the minimum point in the MAD surface
is centered in the search region, whereas the full search is
o�set by length of the motion vector. A (10,10) surface is
shown in these plots. (The MAD surface is for block (9,7)
in the 16th frame.)

(a) (b)

Figure 2: FlowerGarden MAD surface: comparing
FS to LPS.

3. LPS IN NOISY VIDEO SEQUENCES

In noisy environments, the MAD matching criteria must
discriminate between the minimum value of MAD surface
and a large number of false matches. By biasing the search
towards the estimate, v̂(t), many false targets are elimi-
nated from the computation of the MAD.

The results obtained for the LPS in noisy sources can be
analyzed with respect to the motion vector �eld they pro-
duce. In the case of moderate noise with an SNRp of 30 dB,
the motion �eld obtained from the LPS is smoother than
the motion �eld for the FS, as illustrated in Figure 3. Here

we de�ne SNRp = 10 log
10

255
2

�2
n

, where �2n is the variance

of the noise. Having a smoother motion �eld not only im-
proves the prediction error as measure by PSNR (as shown
in Section 4), but also improves the e�ciency with which

These values comprise a surface where the minimum distortion
value corresponds to the motion vector v(t) = [dx; dy]T . It is
di�cult to locate the global minimum because of the ambiguity
in the surface (spurious signals and noise) and due to the large
number of local minima. NOTE: for display purposes, the surface
plot is inverted, such that the maximum value corresponds to the
displacement vector.
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Figure 3: Motion �eld for the CycleGirl sequence in
the presence of AWGN.

the motion vectors are coded. The motion �eld with an in-
put SNRp of 30 dB is shown in Figure 3a for the FS and in
Figure 3b for the LPS. In these examples, a 16� 16 search
region is used for the FS and LPS.

The LPS employs a 13-tap spatio-temporal �lter. The
ROS for this �lter extends spatially along the horizontal and
vertical axis and spans into the previous frame as shown in
Figure 4. It was found that high-order �lters perform bet-
ter than low-order �lters in the presence of additive white
Gaussian noise (AWGN) and the 13-tap spatio-temporal
�lter provided su�cient robustness without adding undue
coder complexity. The 13-tap �lter requires a total of 13
multiplies and 12 adds per motion vector.
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Figure 4: Region of support for the 13-tap spatio-
temporal LPS prediction �lter.



To simulate noisy sources, Gaussian noise was added to
the image sequences. AWGN may not be the ideal noise
model for video source material, but it is experimentally
reproducible and indicative of the noise phenomena.

4. RESULTS

Comparisons of the full search, hierarchical search2, and
log search [4] indicate that the LPS is a robust technique
for motion estimation. Results of these comparisons are
shown for di�erent noise levels and video sequences. Ad-
ditive white Gaussian noise was added to image sequences
with an input SNRp varying from 10 dB to 50 dB. PSNR
was measured between the input (noisy) frames to the coder
and frames reconstructed using motion-compensated pre-
diction.

In Figures 5 and 6, the average PSNR (across all input
frames) is plotted against input noise level. The average
PSNR, PSNRavg, is given as

PSNRavg =
1

F

FX

i=1

PSNRi ;

where PSNRi is the measured PSNR for frame i and F

is the total number of frames. Here we compare the LPS
scheme against conventional motion-vector search schemes.
Under normal operating conditions, e.g., input SNRp be-
tween 30 to 50 dB, the performance of the LPS is as much
as 1 dB better than the performance of the FS algorithm
for the CycleGirl sequence, as seen in Figures 5 and 7.
In Figure 6, the results for the CheerLeader sequence are
plotted. InCheerLeader examples, the LPS is always bet-
ter than the FS, log search, and hierarchical search for every
noise conditions, but the improvement using the LPS is not
as great as in the CycleGirl case. In Figure 5, a 16� 16
search region was used with a 13-tap spatio-temporal �lter.
In Figure 6, an 8 � 8 search region is used with a 13-tap
spatio-temporal �lter.

All BMAmotion estimation techniques fail for extremely
noisy sequences, e.g., for input SNRp of 10 dB. At low noise
levels (input SNRp from 40 to 50 dB) the coder's perfor-
mance is comparable to its performance in a noise-free en-
vironment. For high-noise environments, little can be done
to improve motion-estimation e�ciency. Figures 5 and 6
show all block-matching motion-estimation algorithms fail-
ing at high noise levels,3 (10 to 20 dB); however, even at
these high levels, LPS yields a performance gain of 0.1 to
0.05 dB over the FS algorithm.

In Figure 7, the performance of the LPS is shown at a
�xed input noise level of 30 dB across all input frames of
the CycleGirl sequence. In this example, a 16�16 search
region was used with a 13-tap spatio-temporal �lter. The
LPS outperforms the FS and other fast search algorithms
at this moderate noise level.

In Figure 8, the performance for the CheerLeader is
shown under a high-noise condition. Here, an extremely

2The hierarchical search used in these experiments use down-
sampling only, without motion-vector �ltering [3].

3In typical video sequences, realistic noise levels occur below
30 dB, i.e., SNRp > 30 dB.
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Figure 5: PSNR (average) vs source PSNR for Cy-

cleGirl sequence.
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Figure 6: PSNR (average) vs source PSNR for
CheerLeader sequence.

high input SNRp of 10 dB is used for the input to the mo-
tion estimation algorithm. Although the LPS performs bet-
ter than the other algorithms, the di�erence in performance
between the di�erent methods is negligible. However, since
the LPS adds little complexity to the video coder, it should
be used in all cases.

Performance of the LPS is dependent on the amount
of motion present in the video sequence and on the size
of the search window. In Figure 9, the improvement of
the LPS over the FS algorithm is shown. For very large
search regions, i.e., search regions greater than 16 � 16,
there is negligible improvement when using the LPS, since
the algorithm cannot bene�t from the localized search. For
smaller search windows, i.e., search windows smaller than
4�4, the search region is unable to encompass the minimum
MAD. At intermediate search region sizes, the LPS bene�ts
from the localized-search process and for these cases the
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Figure 7: PSNR vs frame number of �xed input
PSNR, CycleGirl sequence.
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Figure 8: PSNR vs frame number of �xed input
PSNR, CheerLeader sequence.

LPS's performance is optimal as evident in Figure 9.

5. CONCLUSIONS

The LPS provides an advantage over the FS algorithm in
the presence of AWGN. With the LPS, the motion �eld is
smoother, providing a more accurate measure of object mo-
tion. This characteristic of the LPS provides performance
gains over the FS algorithm with AWGN. At relatively low-
noise levels, the LPS's performance is comparable to its
performance in the noise-free environment. At intermedi-
ate noise levels, SNRp around 30 dB, the gain provided
by the LPS with the CycleGirl video sequence is more
than 1.5 dB with a 16 � 16 search region to as much as 3
dB with an 8 � 8 search region, as shown in Figure 7. At
high noise levels SNRp around 10 dB the BMA model fails,
yet even under these extreme conditions, the LPS provides
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Figure 9: Improvement over FS for the LPS for
di�erent search regions in the presence of 30 dB
AWGN for the CycleGirl sequence.

improvement in performance over the FS algorithm.
Since the computational burden of the LPS is negligi-

ble when compared with the computational complexity of
the FS BMA, its use in motion-compensated prediction is
recommended. In addition to its PSNR performance, the
LPS also yields smooth motion �elds, as seen in Figure 3.
This characteristic makes the motion vectors easier to code,
lowering the overhead associated with motion parameters.
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