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ABSTRACT

Given two frames of a dynamic scene with several ri-
gid body objects undergoing di�erent motions in the
three-dimensional space, we robustly estimate the motion
and structure of each object. The least median of squares
(LMedS) estimator is integrated into a robust 3D motion
parameter estimation and scene structure recovery frame-
work to deal with the multi-motion problem. Experimental
results underline the capability of the approach to deal suc-
cessfully with multi-component motion. We apply the ap-
proach presented in this paper to the problem of automatic
insertion of arti�cial objects in real image sequences.

1. INTRODUCTION

The estimation of motion parameters for objects in an
image sequence and simultaneous recovery of the scene
structure is a very important problem in various computer
vision and image communication applications. The primary
focus in the literature has been on motion of a single ob-
ject in the scene. However, in most practical situations the
motion �eld is not homogeneous as there may be several
objects undergoing di�erent motions. Most of the existing
motion analysis methods would fail to perform under these
circumstances. Recently, there had been some attempts to
identify and estimate the various motion components pre-
sent in the scene [1, 2, 3, 4].
In this paper we address the following problem: Given

two frames of a dynamic scene with several rigid objects
(and/or the camera) undergoing di�erent motions in three-
dimensional space, how can we robustly estimate the motion
and structure of each object? The problem simultaneously
imposes the task of inherent segmentation of the scene into
regions that contribute to di�erent motion �elds.
A recently published [5] robust approach for motion re-

covery is extended for multiple objects in this paper. The
concept of epipolar line constraint [5] is used to recover the
motion parameters and to simultaneously compute the mo-
tion disparity used to reconstruct the depth map. The least
median of squares (LMedS) estimator [6] is used to di�e-
rentiate or classify the motion �eld into various constituent
groups.
This paper is organized as follows. First, we brie
y dis-

cuss how we use the epipolar constraint to analyze a scene
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with a single moving object. Then we extend the approach
to deal with the multi-component motion in the �eld of view
of the camera using the proposed technique. In the �rst sec-
tion of our experimental results we demonstrate the ability
of the algorithm to separately estimate multi-component
motion. Finally we use the algorithm for automatic inser-
tion of arti�cial 3D objects into a real image sequence to
demonstrate its application.

2. SINGLE COMPONENT MOTION

ANALYSIS

Traditionally, structure-from-motion algorithms utilize a
two-stage approach. First, feature points are extracted
from the current image and their correspondence to fea-
tures in the previous image is established. In a second step,
rigid body motion parameters and depth values are com-
puted from these feature point correspondences. There is
no feedback from the computation of motion parameters
and depth to the feature matching process, and, typically,
the results are very sensitive to errors in feature correspon-
dences [7, 8, 9, 10].

A new structure-from-motion algorithm was presented in
[5] that does not separate feature matching and the 3-D
motion recovery computation and thus overcomes the in-
herent limitations of the conventional two-stage approach.
The algorithm is based on the observation that feature cor-
respondences for a given 3-D motion are constrained to lie
on a straight line (called the epipolar line) in the image [7].
The position along the epipolar line corresponds to di�erent
depth values.
For a given set of 3-D rigid body motion parameters,

we can readily compute the parameters of the epipolar line
for the ith feature point in the image from the well known
equation [7]
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image. The DFD surface at a point (Xi; Yi) is given by
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where I1 and I2 are the intensity images, (dX ; dY ) the dis-
placement, and N, M the size of the measurement windows
in horizontal and vertical directions, respectively. Please
note that the computation of the DFD surfaces is very simi-
lar to the computation for full-search block matching. The
search for correspondence is now restricted along the epi-
polar line over the DFD surface. The point along this line
where the DFD surface has the least value is taken as the
match.
Since the search for correspondence on the epipolar line

requires a knowledge of the 3-D motion parameters the algo-
rithm searches the 5-dimensional motion parameter space.
The search terminates when a local minimum of the ac-
cumulated mean squared DFD values is encountered. The
cost function to be minimized for F feature points (centers
of measurement windows) selected in the image is given by

min
E
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min
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DFD(Xi;Yi ;dX ;dY ) (3)

A simple conjugate direction search method is used to
arrive at the solution. Now, given the motion parameters,
a dense map of depth (scaled by a factor) can be recovered
for all points in the scene by searching for their displacement
vectors (dX ; dY ) along the corresponding epipolar line.

3. MULTI COMPONENT MOTION ANALYSIS

Let us now consider the case where there are two objects un-
dergoing di�erent rigid motions, say E1 and E2. Obviously,
the least squares minimization of the cost function as given
in equation (3) does not yield good results as the epipolar
lines corresponding to these motions for a particular point
could be very di�erent. While estimating the dominant mo-
tion E1, the second motion �eld creates outliers that must
be identi�ed and rejected in order to obtain a good estimate
of the dominant motion parameters. We propose the use of
the LMedS estimator which can e�ciently detect such out-
liers, enabling one to obtain a robust estimate of the motion
parameters.
The LMedS estimator has been used in various compu-

ter vision applications, including motion analysis [11]. An
extremely important property is that the LMedS estima-
tor can tolerate up to 50% data contamination by outliers
[6]. Here, one replaces the mean of the squared residuals by
their median to achieve the robustness. Hence, we modify
our cost function to estimate the motion parameters E1 by

min
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(4)
There is an inherent assumption in using equation (4) to
estimate the motion parameter E1. It is assumed that at

least half of the feature points used in the estimation pro-
cess belong to the object moving with motion E1. In other
words, the cardinality of the segmented region belonging to
the �rst object when normalized with respect to the total
size of the image must be greater than 0.5. Having esti-
mated the �rst component of the motion, a dense map of
displacement vectors for all pixels is obtained. The residual
error for each feature point given by the minimum of the
DFD surface along the corresponding epipolar line is sor-
ted by their magnitude. A search is now initiated in the
bottom half of the residuals to locate the break point when
there is a sudden large increase in magnitude. The points
above the break point are outliers and should belong to the
second object undergoing a di�erent motion E2. Hence, we
achieve an automatic segmentation of the scene based on
motion parameters. The parameters E2 are now estimated
using equation (3), but the computation is restricted to the
segment that belongs to the second object.
The above procedure can be very easily generalized to

deal with even a larger number of motion components in the
�eld of view of the camera, provided that the cardinality of
the region belonging to the next dominant motion is larger
than the cardinality of the rest of the objects, by simply
reiterating the procedure on the remaining region.

4. EXPERIMENTAL RESULTS

4.1. Separation and estimation of multiple moti-

ons

A synthetic scene is used to illustrate the ability of our ap-
proach to separate and estimate multiple motions. Fig. 1
shows a screen shot of the 3D scene consisting of two ob-
jects. Texture is mapped on a planar surface (object 1) with
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Figure 1. Two frames of a synthetic scene with 2

independently moving objects.

increasing depth from bottom to top in Fig. 1. Please note
that in Fig. 1 object 1 is the background since it covers
the entire �eld of view. The plane moves to the right (x
direction). In front of object 1 a second object with di�e-
rent texture is moving independently in y direction. The
scene is recorded before and after the motion and the two
resulting images are used for motion estimation. The al-
gorithm presented in this paper accurately estimates the
dominant motion to be translational only in x direction (in
this case the motion of object 1). The displacement vec-
tor for each pixel is obtained searching for the best match
along the epipolar line for a rectangular measurement win-
dow around the pixel. Fig. 2 shows the recovered depth
map applying the estimated dominant motion for all image
pixels. It can be seen that the structure of object 1 is ac-
curately recovered, but the image area covered by object 2
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Figure 2. Recovered depth map using the dominant

motion parameters for all image pixels.

leads to many outliers. Please note that dark values repre-
sent large depth values. We then sort the matches along
the epipolar line found for each pixel by their magnitude as
shown in Fig. 3. The separation of the two objects is achie-
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Figure 3. Sorted residual error (MSE) along the

epipolar line for all image pixels using the dominant

motion parameter set recovered with the LMedS

estimator.

ved by searching for the point where we observe a sudden
increase in matching error. Fig. 4 shows the depth map
with separation of the objects. All pixels not belonging to
object 1 are white. It can be seen that automatic segmen-
tation is achieved. Please note that pixels that belong to
uncovered background (object 1) are not classi�ed as part
of object 1. Pixels have to be visible in both frames in order
to achieve correct segmentation. The algorithm now remo-
ves all pixels belonging to object 1 from the data set and
the algorithm restarts from the beginning for the remaining
pixels. In a second experiment we used the images reprodu-
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Figure 4. Recovered depth map after object sepa-

ration with the LMedS estimator.

ced in Fig. 5 as input to our algorithm. In comparison to
Fig. 1, object 2 is replaced by a textured 3D head model.
The plane moves translationally to the right (x-direction),
whereas the motion parameters of the head are rotation
of 1o around the y-axis (Rx = 0o, Ry = 1o, Rz = 0o) and
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Figure 5. Second example of a Synthetic scene with

two independently moving objects.

translation in y-direction. Fig. 6 shows the recovered depth
map after object separation with the algorithm proposed in
this paper. As in the previous experiment, the plane (object
1) represents the dominant motion. The motion parameters
recovered for object 1 show translation in x-direction. After
compensation of the dominant motion, the estimated rota-
tion for object 2 is Rx = �0:02o, Ry = 0:993o, Rz = 0:01o.
The translation is correctly estimated to be in y-direction
only.
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Figure 6. Recovered depth map after object sepa-

ration with the LMedS estimator.

4.2. Animation of an arti�cial 3D object in a real

image sequence

In the following we describe how the algorithm presented
in this paper has been applied to the automatic insertion
of an arti�cial 3D model into a real image sequence. The
virtual camera recording the arti�cial object is animated
using the motion parameters estimated from the real se-
quence. Fig. 7 shows the �rst frame of the Flowergarden
sequence and the rendered arti�cial 3D object, a windmill,
to be inserted. The arti�cial object is superimposed ma-
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Figure 7. Left: frame 1 of Flowergarden sequence.

Right: an arti�cial 3D object rendered at initial

position.

nually at the position in 3D space such that the projection



in the image plane corresponds to the desired starting po-
sition. Fig. 4.2. shows the estimated motion parameters
(translation) for the �rst 100 frames of the real image se-
quence. From monocular image sequences the translation

Figure 8. Estimated translation parameters for 100

frames of the Flowergarden sequence.

vector can be reconstructed only up to a common scale fac-
tor. We therefore have to appropriately scale the recovered
translation vector from frame to frame. In order to in-
itialize the length of the translation vector we average the
recovered translation parameters for the �rst 20 frames of
the sequence and manually determine the required length
of the translation vector for correct position of the rendered
object in the image plane. We then compute the scaling fac-
tor between successive depth maps comparing the average
inverse depth value of the scene. At frame 50 we reinitialize
the length of the translation vector in order to avoid drift of
the arti�cial object. In Fig. 4.2. we show frames 1, 20, 40,
60, 80, and 100 of the arti�cially created image sequence.
When viewed as a motion sequence, the synthetic object
appears to be rigidly connected to the (natural) ground.

5. CONCLUSIONS

We have presented a robust method to recover multi-
component motion in a scene using the epipolar constraint
in conjunction with an LMedS estimator. The tasks of mo-
tion segmentation and depth recovery are performed simul-
taneously in a computationally e�cient way. Experimental
results show that the approach presented in this paper is
capable of estimating the motion of multiple objects. We
applied the algorithm to the problem of automatic insertion
of arti�cial 3D models into a real image sequence.
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