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ABSTRACT

Two methods to overcome the problems with large vec-
tor quantization (VQ) codebooks are lattice VQ (LVQ) and
product codes. The approach described in this paper takes
advantage of both methods by applying residual VQ with
LVQ at all stages. Using LVQ in conjunction with entropy
coding is strongly motivated by the fact that entropy con-
strained but structurally unconstrained VQ design leads to
more equally sized VQ cells. The entropy code of the �rst
LVQ stage should aim at exploiting the statistical proper-
ties of the source. The re�nement LVQ stages quantize the
residuals. Simulations show that there exist certain scales of
the re�nement lattices yielding extraordinary performance.
We focus on the search of these scales.

1. INTRODUCTION

Successive approximation data descriptions are naturally
obtained using residual vector quantization (RVQ) [1].
Residual vector quantizers use a sequence of encoder stages
where each stage encodes the residual vector of the prior
stage. RVQ is one of several methods of imposing a product
code on a vector quantizer in order to reduce computation
and memory requirements simultaneously. The codebook
size of the product code is then equal to the product over all
stage codebook sizes. Successive approximation of an input
vector opens the possibility to precisely control the bitrate.
This property is required in many source coding applica-
tions, e.g. hierarchical or scalable image or video coding.
A two-stage vector quantizer with an unstructured code-

book at the �rst stage and lattice vector quantization (LVQ)
for the quantization of the approximately Gaussian residual
was presented in [2]. The e�ectiveness of that method is de-
pendent on the feasibility of using a large enough �rst-stage
codebook to exploit most of the source memory.
In this paper, multi-stage RVQ with lattice vector quan-

tization at all stages is considered. LVQ o�ers extremely
fast algorithms which �nd the nearest lattice point for a
given input vector. Furthermore it requires no memory for
codebook storage if the lattice points are used as decoder
codebook and enumeration algorithms (see e.g. [3]) are ap-
plied. Entropy coded LVQ at the �rst stage makes large
vector dimensions possible and facilitates the exploitation
of the source memory. Using entropy coded LVQ is strongly
motivated by the fact that entropy constrained but struc-
turally unconstrained VQ design leads to more equally sized
VQ cells [4].
Either concatenated codewords for (pyramid) radius cod-

ing and enumeration or usual entropy codewords can be
used. The �rst method allows the use of a large �rst-stage
codebook. The latter method requires more memory for
the codeword storage but allows a better adaptation to the
joint probability density function of the source.
With LVQ at all stages, the shape of the Voronoi cells

of the prior stage determine the boundary of the input dis-
tribution of the following stage. For the �rst re�nement
stage, the assumption of an equal distribution inside the cell
boundary is reasonable if the source distribution is smooth
and the �rst-stage codebook is not too small. If the equal
distribution assumption is true for all stages, the determi-
nation of the rate-distortion performance of any re�nement
stage is source-independent and can be regarded as a geo-
metrical problem.
The following assumptions are made:

� Given the dimension of the input vectors, the best
known lattice vector quantizer for this dimension shall
be used in all the stages. (Refer to [5] for the types
of lattices and [6] for fast quantization algorithms).
Then, the relation between the lattices of two consec-
utive stages can be characterized by a scale factor, a
translation vector and a rotation matrix. These pa-
rameters describe the transformation from the lattice
of stage p into the lattice of stage (p + 1) (and vice
versa). We denote them as transformation parameters.

� In the re�nement stages (all stages except for the �rst),
the residual error is assumed to be equally distributed
inside the shape of a Voronoi region of the prior stage.
This assumption needs to be discussed in section 2.3.

� Entropy coding is used for the indices of the codebook
vectors.

Section 2. will introduce and illustrate these assumptions
and their consequences in detail. The resulting residual
LVQ model will allow us to compute operational rate-
distortion functions (ORDFs) for the re�nement stages. We
will observe that { depending on the transformation param-
eters { outstanding points with exceptional performance ap-
pear in the ORDFs. Sections 3. and 4. address the ques-
tions how these points can be found and how RVQ design
can bene�t by this knowledge.

2. A MULTIPLE STAGE LATTICE VECTOR
QUANTIZER MODEL

We consider two consecutive stages of a residual lattice vec-
tor quantizer. Let the \�ne" lattice1 �f of stage (p+1) be
de�ned as the set

�f =

(
vf 2 R

n : vf = s+

nX
i=1

kiai; ki 2 Z

)
(1)

of all integral combinations of n linearly independent basis
vectors ai 2 R

n ; (i = 1; :::; n), shifted by s. The \coarse"

1The indices c and f are used for \coarse" and \�ne" lattice,
respectively.
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Figure 1. 1) no translation, no rotation, 2) no
translation, rotation, 3) translation, no rotation, 4)
translation and rotation.

lattice of stage p

�c =

(
vc 2 R

n
: vc = �T

nX
i=1

kiai; ki 2 Z

)
(2)

can be obtained from the �ne lattice by applying the inverse
shift, a rotation with rotation matrix T, det(T) = 1 and a
scaling with � � 1. The nearest-neighbor region (so-called
Dirichlet- or Voronoi region) of a lattice point v 2 � can
be de�ned as

C(v) = fx 2 Rn : kx� vk � kx� zk; 8z 2 � n fvgg :
(3)

We also introduce the notation

C(v) + y = fx+ y : x 2 C(v)g ; y 2 Rn (4)

which describes a translated Voronoi region.
Cf and Cc shall denote Voronoi regions of points from �f

and �c, respectively. If vc is used as reconstruction vector
of the region Cc(vc), the residual vector will always lie in
Cc(vc)� vc = Cc(0).
Fig. 1 shows an example with A2-lattices: the hatched

area is Cc(0). The �ne lattice �f is used for the quantization
of the residual error. For a Voronoi cell Cf(vf) of a point
from the �ne lattice, three cases can be distinguished: either

1. it lies completely inside Cc(0) such that
Cf (vf) \ Cc(0) = Cf (vf), or

2. it is intersected by the border of Cc(0), or

3. it lies completely outside Cc(0), such that
Cf (vf) \ Cc(0) = ;.

Using the mean squared error criterion and assuming an
equal distribution of the residual error over Cc(0), the opti-
mal (decoder) reconstruction vectors are y = vf in case 1
and

y = V (Cf(vf ) \ Cc(0))
�1

Z
Cf (vf )\Cc(0)

xdx (5)

in case 2, with the volume V (R) =
R
R
dx. If not stated

otherwise, optimal reconstruction vectors will be used. One
such vector is marked by an \x" in Fig. 1. The probability
for the cell of a point vi from the �ne lattice is given by

Pi =
1

Vc

Z
Cf (vi)\Cc(0)

dx (6)

with the shortcut Vc = V (Cc(0)). Further, Fig. 1 shows
four di�erent methods (from an in�nite number of possible
choices) for the transformation parameters. For methods
1) and 2) both lattices have the same origin, whereas for

methods 3) and 4) the �ne lattice is shifted such that a deep

hole2 of �f falls onto 0. For methods 1) and 3) no rotation
is used, for methods 2) and 4) the rotation angle is �

6
.

Using the mean squared error, we have

Dc =
1

nVc

Z
Cc(0)

xTx dx ; (7)

Df =
1

nVc

X
vi2�f

Z
Cf (vi)\Cc(0)

(x� vi)
T
(x� vi)dx ;

(8)

for signal and noise per dimension, respectively. The factor
V �1c represents the constant probability density function.
Assuming the self-information li = � log2 Pi as approxima-
tion for the number of bits needed to represent the index i,
we are now equipped to compute operational rate-distortion
functions (ORDFs) for the re�nement stage. Section 2.2.
will provide an example.

2.1. Implementation Issues

The ORDF computations require multidimensional integra-
tions of (5), (6) and (8). Describing the boundaries of the
region Cf (vf) \ Cc(0) analytically is a di�cult problem if
the dimension n is large. We solved the problem numeri-
cally using Sobol's quasirandom sequence generator which
is suitable for multidimensional integration [7].
Attention must be paid with the numerical evaluation of

(8): let us assume that the \Sobol-set" fx1; :::;xNg of size
N covers the regionR = Cf(vf )\Cc(0) with a \quasi-equal"
distribution. The integral for the distortion contributed by
R with reconstruction vector v

df =
1

nV (R)

Z
R

(x� v)
T
(x� v) dx (9)

will then be approximated by

d̂f = e+
1

nN

NX
s=1

(xs � v)
T
(xs � v) : (10)

The expectation for the error e is a positive value which
approximates 0 as N ! 1. A thorough analysis of this
error yields the simple result

e �
1

N

NX
s=1

Gs V
2

n

s with (11)

Gs = V
�1� 2

n

s

1

n

Z
Ss�gs

x
T
xdx ; (12)

where Gs is the normalized second moment of the small
Voronoi cell Ss assigned to the point xs from the Sobol-

set with volume Vs =
R
Ss
dx and center of gravity gs =R

Ss
xdx. The only required simpli�cation in (11) is the as-

sumption gs � xs. Further assuming that an n-dimensional
Sobol-set produces Voronoi cells with a \typical" normal-

ized second moment, say G(n), a simpli�ed version can be
obtained

e �
G(n)

N

NX
s=1

V
2

n

s : (13)

2A deep hole is a point with maximum distance from the lat-
tice points. Its distance from the closest lattice points is called
covering radius R.
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Figure 2. Covering radius and inradius of �f and
�c.
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Figure 3. Rate-distortion functions for 2-
dimensional residual lattice VQ. The small circles
mark points where the scale-factor � is integer-
valued.

Because of the \quasi-equal" distribution of the Sobol-set,
this can be further simpli�ed to obtain

e �
G(n)

N
V

2

n ; (14)

where V is the average volume of the Voronoi cells of the
points from the Sobol-set. We now have a correction term
which improves the exactness of the numerical evaluation
of (8) or allows to reduce the size of the Sobol-set.
There is even more potential for the increase of exact-

ness and execution speed: numerical integrations are only
needed for points of the re�nement lattice having distances
r from the origin satisfying �� � R � r � �R + R (see
Fig. 2), where � is the inradius and R the covering radius
of �f . For the other case r < ���R, the distortion intro-
duced by a random variable with equal distribution over a
lattice Voronoi region is tabulated e.g. in [5].

2.2. Example

Fig. 3 shows the results of the four methods introduced in
Fig. 1 in an average rate per dimension (Rf) versus SNR
plot. Two important details can be read from Fig. 3:

� If an individual ORDF is regarded, we �nd a few out-
standing points for which the rate-distortion perfor-
mance is remarkably good. (E.g. the arrow marks the
point �8:252 dB, 1:399 bit of curve 2) with � = 2:32).

� If the ORDFs are compared to each other, we �nd that
none of the four methods is always superior. The best
choice depends on the desired rate or SNR.

2.3. The Equal Distribution Assumption

The assumption of an equally distributed residual error in-
side a Voronoi cell boundary of the prior stage enabled
source-independent determination of the rate-distortion
performance of the re�nement stage. The real distribution
may di�er from this assumption. We have to consider under
which conditions the assumption is appropriate. More pre-
cisely, we are not interested in the exact distribution itself,
but in the question if the coding results for real distribution
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Figure 4. Comparison of stage p = 1 (�) and stage
p = 10 (+) in terms of normalized Df . Dashed: nor-
malized second moment G. Left: method 1) for
n = 2. Right: method 3) for n = 3.

and equal distribution di�er signi�cantly. If not, together
with our knowledge about the emergence of the distribu-
tion, it is reasonable to claim that the equal distribution
assumption is justi�ed.
The idea is the following: starting with an equal distri-

bution as input to the �rst stage, repeated quantization of
the residual error is performed. All transitions from stage
p to stage (p+ 1); p 2 N, shall use the same transition pa-
rameters. It can be observed that Df=Dc converges after a
few stages, long before oating point accuracy is reached.
Now, let us compare stage one with a converged stage, say
e.G. stage 10, in terms of Df=Dc where Df is a measured
value and Dc is the distortion for an equally distributed in-
put (that is what we actually use in the simulations). Thus,
considering our simulations, stage one is the model we use
for all following stages. Now, we have to check how good
its results correspond to those of the \real" stage 10. In
both cases, we normalize Df such that a comparison with
the known normalized second moment

G = V
�1� 2

n

c

1

n

Z
Cc(0)

x
T
x dx (15)

of a Voronoi cell of the considered lattice is also possible
(dashed lines in Fig. 4). To give some examples, Figure
4 shows the results after stage p = 1 (circles) and stage
p = 10 (plus-signs) for n = 2 with method 1) (left plot)
and n = 3 with method 3). The upper pairs of curves
were obtained using the lattice points (encoder codebook)
as reconstruction vectors. The lower two pairs of curves
were obtained with optimal reconstruction vectors (decoder
codebook). We observe that for � > 2 always a good cor-
respondence between the results of stages 1 and 10 can be
observed. This justi�es the equal distribution assumption.
Additionally, for this investigation we found that the dif-

ference between (14) and the more general version (13) is
negligible if n � 2.

3. FINDING GOOD LATTICE SCALES

Using a Lagrangian formulation like

J� =
Df

Dc

+ �R (16)

we usually solve the problem of minimizing distortion sub-
ject to a constraint on the entropy by minimizing J�. In a
practical coder, the parameter � may be driven by a bu�er
control unit which manages the tradeo� between rate and
distortion. Minimizing J� for a given ORDF and a given
factor � yields an optimum operation point which will for
our parametric representation be expressed in terms of the

3



0.01 0.1 1
0

1

2

3

4

5

6

7

8

9

10

λ

α

Figure 5. Optimal scale factors �(�) for method 1).
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Figure 6. Optimal scale factors �(�) for methods 1)
- 4) using A2-lattice.

scale factor �. Fig. 5 shows the result of the minimiza-
tion for method 1) of the two-dimensional example (with-

out translation, without rotation)3. One would expect �(�)
to be a strictly decreasing function (because ORDFs are
usually convex), but this is not true: �(�) is more or less
a staircase function, preferring the above-mentioned points
with exceptional performance. Practically, this implies that
switching e.g. between � = 3 and � = 4 yields better per-
formance than using � = 3:5. Fig. 6 shows the result when
additionally the best of all permitted methods is searched.
The lower curve shows the selected method.

4. RESULTS AND DISCUSSION

Further simulations were performed for dimensions n = 3
and 4 using the lattices D�

3 and D4, respectively. In order to
keep the number of di�erent choices of the transformation
parameters handy, for D�

3 only a translation onto a deep
hole and a rotation maximizing the number of parallel facets
of Cc and Cf were used. For D4, only the translation onto
a deep hole was used as alternative. So, we again have four
di�erent choices for D�

3 and two di�erent choices for D4.
The resulting optimal �(�) functions are shown in Figures
7 and 8, where the numbers 1) - 4) have the same meaning
as in the previous examples.
Regard again Fig. 5: except for a small region around

� = 0:1, the optimal adaptation of the considered quantizer
to an arbitrary factor � requires only a small number of
scale factors. Therefore, transmission of the selected scale
factor only needs a very small amount of overhead informa-
tion. If the RVQ is allowed to switch between several meth-
ods, rate-distortion performance is generally improved. But

3In the example of Fig. 5 , � happens to assume integer values.
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Figure 7. Optimal scale factors �(�) for methods 1)
- 4) using D�

3 -lattice. Thick line: best method, thin
line: method 1), gray line: method 3).
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Figure 8. Optimal scale factors �(�) for methods 1)
and 3) using D4-lattice.

the number of permitted transformation parameter sets {
and hereby the amount of overhead information { is in-
creased, too (compare Figures 5 and 6). This may compen-
sate the rate-distortion improvement if the factor � changes
frequently.
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