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ABSTRACT

This paper is concerned with the e�cient storage of the
luminance parameters in a fractal code by means of vec-
tor quantization (VQ). For a given image block (range)
the collage error as a function of the luminance parame-
ters is a quadratic function with ellipsoid contour lines. We
demonstrate how these functions should be used in an op-
timal codebook design algorithm leading to a non-standard
VQ-scheme. In addition we present results and an evalua-
tion of this approach. The analysis of the quadratic error
functions also provides guidance for optimal scalar quanti-
zation.

1. INTRODUCTION

In fractal image compression [1, 2, 3] an image is parti-
tioned into a set of image blocks called ranges. The ranges
are matched with blocks taken from a codebook of �ltered
and subsampled image blocks (`domains') up to an a�ne
transformation of intensity values. To �nd the optimal pa-
rameters of the a�ne transformation for a range R and a
domain D, the least squares problem

(ŝ; ô) = arg min
s;o2IR

jjR � sD � o1jj2;

has to be solved, where 1 is the constant block with unit
intensity at every pixel. The scaling parameter s and the
o�set o are called luminance parameters. The scaling co-
e�cient s is clamped to [�smax; smax], 0 � smax < 1, to
ensure convergence in the decoding. The codebook block
Dk that minimizes the collage error

E(D;R) = jjR� ŝD � ô1jj2

yields the fractal code for range R consisting of the address
k and the quantized coe�cients. Since the quantization of
ŝ; ô increases the collage error, the codebook block which
minimizes the collage error using quantized luminance pa-
rameters should be chosen.
The quadratic forms given by the collage error as a func-

tion of s; o (with D;R �xed),

ED;R(s; o) = jjR � sD � o1jj2 = hD;Dis2 + 2hD;1iso+

h1;1io
2
� 2hR;Dis� 2hR;1io+ hR;Ri;

have ellipsoid contour lines (see Figure 1). Here, h�; �i de-
notes the vector dot product. For example, hD;Di is the
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Figure 1. An example of the shape of the contour lines of

E(D;R) as a function of the luminance parameters.

sum of the square intensities in block D, and h1;1i equals
the number of pixels in a block. The shape of the ellipses
depends only on hD;Dis2 + 2hD; 1iso+ h1;1io2. Thus, by
determining the eigensystem of

�
hD;Di hD; 1i
hD;1i h1;1i

�

one gets the lengths and directions of the major and minor
axes. When one considers the di�erent orders of magnitude
of the scaling and the o�set parameter, such an analysis
shows that the error is more sensitive to changes in the
o�set than to changes in the scaling component.
In Fisher's quadtree coder [3] a scalar quantization

scheme is employed: �rst, ŝ is quantized using a uniform
quantizer with 2sbits levels for [�smax; smax]. Then the
optimal o�set for this quantized scaling coe�cient is com-
puted. This o�set is quantized using a uniform quantizer
for [omin(s); omax(s)] with 2obits levels, where

[omin(s); omax(s)] = [�255s; 255] for s � 0;

[omin(s); omax(s)] = [0; 255(1� s)] for s < 0:

Since the s-value determines the interval of feasible opti-
mal o-values, the accuracy of the o�set quantization de-
pends on the corresponding scaling coe�cient. Figure
2 shows the grid of (s; o)-pairs used for quantization by
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Figure 2. The (s; o)-pairs used in the quantization scheme of

[3] (sbits = 3; obits = 4), and the feasible region of (s; o)-pairs.

this scheme. Note that this scheme, at least theoretically,
chooses neither the Euclidean nearest neighbor nor the op-
timal grid point.
In Figure 3 a distribution of optimal (s; o)-pairs is shown.

Obviously, there is a certain structure that can be ex-
ploited using VQ-techniques. This idea was �rst proposed
by Barthel et al. [4] and has been worked out in [6] and in
this paper. In the following section we show the essential
features of an optimal VQ-encoding in the context of fractal
compression which signi�cantly di�ers from standard VQ-
techniques. In Section 3 we give experimental results and
compare the VQ-scheme with modi�ed scalar quantizers. A
relation between the elliptic contour lines of the collage er-
ror functions and the optimal grid for scalar quantization
is given in Section 4. Section 5 concludes the paper with a
summary.

2. VQ-ENCODING OF LUMINANCE

PARAMETERS

Let us denote the ranges and domains for a particular image
encoding by Rk, k = 1::nR, and Dl, l = 1::nD , respectively.
In addition, a codebook of nC (s; o)-pairs is given. Then,
the image encoding problem is to determine the functions

index : f1; :::; nRg ! f1; :::; nCg;

address : f1; :::; nRg ! f1; :::; nDg

such that

nRX
k=1

jjRk � sindex(k)Daddress(k) � oindex(k)1jj
2 (1)

has minimal value. Thus, for each range-domain pair (R;D)
the codebook has to be searched for the entry which mini-
mizes jjR�sD�o1jj2: Note that the best codebook entry is
not necessarily the nearest one (in Euclidean sense) to the
optimal (ŝ; ô). Moreover, it depends not only on (ŝ; ô), but
also on the image data in R and D. Thus, our VQ-encoding
problem is a non-standard one.
How do we get the luminance codebook? The codebook

should be an integral part of the codec. Thus, a good code-
book is a small set of (s; o)-pairs such that, when coding any
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Figure 3. Optimal unquantized (s; o)-parameters of an encod-

ing of Lenna 512�512 with 2663 ranges of sizes 4�4; 8�8; 16�16.

image, the optimum of (1) should be close to the theoretical
limit nRX

k=1

jjRk � ŝDaddress(k) � ô1jj2;

i.e., it should be close to the collage error that is gained
using unquantized luminance parameters. To achieve this,
we propose to take the quadratic forms qk given by the
optimal range-domain pairs of several images as a `training
sequence' and to solve the following optimization problem:

GIVEN: a set of functions
qk(s; o) = aks

2 + bkso+ cko
2 + dks+ eko+ fk;

k = 1::nq ; the codebook size nC .

GOAL: �nd nC (s; o)-pairs to minimizePnq

k=1
qk(si(k); oi(k)), where i(k) is the index of the best

codebook vector for function qk.

For this task we propose an iterative optimization procedure
in the spirit of the LBG-algorithm. After initializing the
codebook, the following two steps are iterated:

1. Clustering: For each qk �nd the codebook entry (si; oi)
such that qk(si; oi) is minimal. Put k into cluster Ci.

2. Codebook re�nement: For each cluster Ci sum up the
quadratics qk; k 2 Ci, yielding a quadratic Qi(s; o) =P

k2Ci
qk(s; o) and replace (si; oi) by the parameters

argmin(s;o)2IR2 Qi(s; o).

Step 1 corresponds to the nearest neighbor condition of a
standard VQ-design. Instead of simply searching the whole
codebook every time, a more sophisticated strategy based
on a bounding box criterion is used to reduce computation
time. Step 2 is the appropriate modi�cation of the standard
centroid condition.

3. EXPERIMENTS

For our experiments we used a modi�ed version [5] of the
fractal coder described in [3]. This coder partitions the im-
age using a quadtree scheme with a splitting criterion based
on the variance weighted with the corresponding number of
pixels in an image block, i.e., a range R is split whenR�

hR;1i

h1;1i
1


2

> T;
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Figure 4. Codebook with 128 (s; o)-pairs.

where the threshold T is a parameter of the coding scheme.
This splitting strategy does not degrade the performance
in the rate distortion sense [5]. Moreover, the quadtrees
generated in this way do not depend on the collage error and
quantization issues in contrast to Fisher's quadtree scheme
in [3]. Thus, this approach is better suited for studying the
quantization issues on hand here.
Several codebooks were designed for di�erent thresholds

T . A codebook containing 128 entries is depicted in Figure
4. Because of the ellipsoid form of the error functions, it is
hard to tell from visual inspection whether those entries �t
well to a distribution as depicted in Figure 3.
Tests were performed by coding Lenna 512�512 (not part

of the codebook training sequence). As a reference, Table
1 gives the optimal collage error as well as the collage error
of the scalar quantization scheme described in Section 1 for
four di�erent partitionings. The scalar quantizer uses eight
bits per range for the luminance parameters. The selection
of sbits = 3; obits = 5 is experimentally determined to be the
optimal choice for our coder. The results in Table 2 show
that using the VQ-scheme savings of one bit per range can
be achieved, i.e., only seven bits per range are used for the
luminance parameters without degrading the collage error.
This is in line with the fact that only about half of the
feasible region is actually covered by optimal (s; o)-pairs
(see Figure 3). However, almost the same savings can be
expected by entropy coding of the s and o streams produced
by the scalar quantizer. Indeed, the entropy for the o stream
is about 3.9. The entropy of the index sequence of the VQ-
scheme with a codebook of size 128 is about 6.5.
Another way of saving a bit per range is to restrict the

values of o to half of the interval that is used in Fisher's
scalar quantizer, i.e., to

[omin(s) +
l

4
; omax(s)�

l

4
]; l = omax(s)� omin(s):

The results of this modi�ed scalar quantization are listed
in the right column of Table 2. In this case the entropy
of the o stream is 3.8. Table 3 lists compression results of
VQ-encoding for codebook sizes 256 and 64. Of the three
codebook sizes tested (64, 128, 256) the 7-bit codebook with
128 entries gives the best rate-distortion curve (but only by
a very small margin).

scalar quantization
number optimal sbits = 3

of collage error compression obits = 5
ranges PSNR (dB) ratio PSNR (dB)
2632 31.03 36.2:1 30.42
1813 29.40 54.1:1 28.88
1516 28.47 65.8:1 28.00
1243 27.50 82.0:1 27.06

Table 1. Shown are the number of ranges of the range parti-

tioning, the PSNR of the collage error using unquantized lumi-

nance parameters, and the compression ratio and collage error

PSNR using the scalar quantizer described in Section 1.

number comp. vector modi�ed scalar
of ratio quantization quantization

ranges 128 (s; o)-pairs 128 (s; o)-pairs

2632 40.0:1 30.48 30.42
1813 56.8:1 28.93 28.87
1516 69.1:1 28.06 28.00
1243 86.2:1 27.13 27.06

Table 2. Compression results (collage error PSNR (dB)) using

VQ of the luminance parameters with a codebook of size 128 and

using the modi�ed scalar quantizer.

number vector quantization
of 256 (s; o)-pairs 64 (s; o)-pairs

ranges ratio PSNR (dB) ratio PSNR (dB)
2632 36.2:1 30.68 39.9:1 30.24
1813 54.1:1 29.11 59.7:1 28.70
1516 65.8:1 28.22 72.7:1 27.87
1243 82.0:1 27.27 90.9:1 26.92

Table 3. Compression results using VQ of the luminance pa-

rameters with codebook sizes 256 and 64.

When one takes into account the additional time needed
for the codebook search in the VQ-encoding, the marginal
gains with respect to scalar quantization appear to be too
small to justify the extra time.

4. OPTIMAL BIT-ALLOCATION FOR

SCALAR QUANTIZATION

The results of Section 3 indicate that scalar quantization (or
Lattice-VQ) is the appropriate compromise between com-
puting time, compression ratio, and quality. In this section
we investigate the relation between the shape of the error
functions and the optimal grid choice. For this purpose we
will use the modi�ed luminance transformation from [6].
Here, a range is approximated by

�s;o(D) = s

�
D �

hD; 1i

h1;1i
1

�
+ s0

hD; 1i

h1;1i
1+ o1;

where so 2 [0; 1) is a �xed parameter of the method. For a
discussion of this transformation see [6]. The shape of the

error functions ÊD;R(s; o) = kR � �s;o(D)k2 is determined
by the quadratic�

hD;Di �
hD; 1i2

h1;1i

�
s2 + h1;1io2:

Therefore the major and minor axes of the elliptic contour
lines are parallel to the coordinate axes. Generally, this is
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Figure 5. Distribution of optimal number of s-levels in a Lenna

512 � 512 encoding with 2662 ranges when 8 bits per range are

used for (s; o).

not the case for the a�ne mappings in the standard scheme.
By setting s0 = 0 one obtains �ien's luminance trans-

formation [7]. The quantization of the scaling parameters
for this special case was done using a Lloyd-Max optimized
quantizer [8]. This quantizer is based on the distribution of
optimal s-values and does not take into account the actual
error functions. In the following paragraph we will outline
under somewhat idealized assumptions how the shapes of
the error functions determine the optimal scalar quantiza-
tion scheme.
For the sake of simplicity, let us assume that all er-

ror functions are of the shape as2 + co2 with the same
coe�cients a and c, and the minima are uniformly dis-
tributed in an area of size l1 � l2. In practice, l1 = 2 is
the size of the range of s-values and l2 is the size of the
feasible range of o-values depending on s0. Which lattice
with q points minimizes the expected quantization error?
For step sizes 2�s; 2�o and a lattice point p all points in
(p��s; p+�s]� (p��o; p+�o] are quantized to p. The
expected quantization error E in this rectangle is

E(�s;�o) =

�sZ
��s

�oZ
��o

as2 + co2dods =
4

3
(a�3

s�o + c�3
o�s):

Setting v := l1l2=q and �o := v=(4�s), one ends up with

E(�s) =
1

3
a�2

sv +
1

48
c
v3

�2
s

:

The minimum of E(�s) is attained at the value �s = 1=2 �
4

p
cv2=a: As expected, this leads to the ratio

�s

�o

=

q
c

a
;

and l1=
4

p
v2c=a levels should be used to quantize s.

Of course, the above analysis is an idealization since the
ratio between the lengths of the major and minor axes are
not the same for all error functions. To obtain the opti-
mal lattice in this case one also has to consider the dis-
tribution of shapes. Figure 5 lists a distribution of the

optimal number 2= 4

p
v2c=a of quantization levels for the

scaling coe�cient s, rounded to the nearest integer, when
a lattice of 256 points is used. This distribution is ob-
tained from the error functions of the optimal range-domain
pairs of a Lenna 512 � 512 encoding using the modi�ed
luminance transformation. Obviously, no more than 16
levels are necessary for the quantization of s, and, when
a power of two s-levels are used, eight s-levels would be
optimal. This is in line with the experimental data (s-
levelsjcollage error PSNR): (2j29.83), (4j30.36), (8j30.44),
(16j30.27), (32j29.88), (64j25.83), (128j6.80).
It seems that the best coding results can be obtained with

s0 = 0 and an optimal quantization lattice, with combined
DPCM/entropy-coding of the o-stream.

5. CONCLUSION

In this paper we have presented a new method of how
VQ-encoding of the scaling-o�set pairs in a fractal coding
scheme should be done taking into account the ellipsoid
forms of the collage error contour lines. This approach leads
to a one bit per range saving compared to the standard
scalar quantization. However, when compared to scalar
quantization combined with entropy coding the bene�ts of
the VQ-approach will be reduced to a marginal gain. This
demonstrates that the structure of the distribution of opti-
mal scaling-o�set parameters is not strong enough to pro-
vide an improvement of fractal coding by VQ-encoding of
the luminance parameters. Nevertheless, the analysis of
the collage error functions leads to a better understanding
of the bit allocation problem of scalar quantization of the
luminance parameters.

REFERENCES

[1] Jacquin, A. E., Image coding based on a fractal theory

of iterated contractive image transformations, IEEE
Trans. Image Processing 1 (1992) 18{30.

[2] Barnsley, M., Hurd, L., Fractal Image Compression,

AK Peters, Wellesley, 1993.

[3] Fisher, Y., Fractal Image Compression | Theory and

Application, Springer-Verlag, New York, 1994.

[4] Barthel, K. U., Voy�e, T., Noll, P., Improved fractal

image coding, Proc. Picture Coding Symposium, Lau-
sanne, 1993.

[5] Saupe, D., Jakob, S., Variance-based quadtrees in frac-

tal image compression, Electronics Letters, to appear.

[6] Barthel, K. U., Festbildcodierung bei niedrigen Bitraten
unter Verwendung fraktaler Methoden im Orts- und

Frequenzbereich, Dissertation, Institut f�ur Fernmelde-
technik, TU Berlin, Wissenschaft & Technik Verlag,
Berlin, 1996.

[7] �ien, G. E., Leps�y, S., Fractal-based image coding with
fast decoder convergence, Signal Processing 40 (1994)
105{117.

[8] �ien, G. E., Parameter quantization in fractal image

coding, Proc. IEEE International Conference on Image
Processing (ICIP), Austin, Texas, 1994, 142{146.


