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ABSTRACT

This paper provides links between the young �eld of
attractor coding and the well-established �elds of systems
theory and graph theory. Attractor decoders are modeled
as linear systems whose stability is both necessary and suf-
�cient for convergence of the decoder. This stability is dic-
tated by the location of the eigenvalues of the sparse state
transition matrix of the system. The relationship between
these eigenvalues, spatial causality of the system, and the
patterns of interdependency between signal elements (or im-
age pixels) is investigated for several cases using concepts
from graph and matrix theory.

1. INTRODUCTION

Fractal coders are coding systems that use the redundancy
present in signals at di�erent scales for compression. Most
of these systems are based on the theory of iterated function
systems (IFS) developed by Barnsley [1]. Jacquin proposed
the �rst implementation of this theory for a completely au-
tomatic image coding system [2].

In this theory, a signal x is represented as the attractor
of a contractive transformation T . The encoder designs T
and the decoder �nds the attractor of T typically by apply-
ing T to an arbitrary initial signal x0 repeatedly, generating
a sequence of signals (xn) that converge to an approxima-
tion of x. The design of T in the encoder is based on mini-
mizing the distance "E = d(x; T (x)). However, the goal of
the system is to minimized "D = d(x;T 1(x)). The Collage
Theorem [1] provides an upper bound for "D in terms of "E.
It has been found that even without the constraint of con-
tractivity of T , in many cases (xn) still converges to a close
approximation of x, sometimes even giving better coding
performance. The concept of contractivity and the Collage
Theorem has been further extended to eventual contractiv-
ity [3], which imposes a milder constraint on T , but still is
not a necessary condition for convergence. When (eventual)
contractivity of T is not established, the Collage Theorem
may not be used, and the convergence of (xn) is not guar-
anteed. In the literature, little analysis has been provided
on the behavior of the decoder in this case. On the other
hand, it has been known that the structure of the inter-
dependence of the signal elements in fractal coders closely
a�ects the convergence and the error in the decoding se-
quence, but the exact relationship between these structures
and the behavior of the decoder has not been established
in the general case. Lundheim [4] noted that typical fractal
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Figure 1: A discrete-time system

coders may be modeled with T being of the form

8x 2 X; T (x) = Ax+B (1)

in a vector space, and in such cases, the spectral radius of
the linear part determines the convergence of the decoding
sequence. He also found that when this linear part is a
decimation matrix, the eigenvalues are related to cycles in
the interdependence patterns of signal elements. H�urtgen
and Simon [5] used the spectral radius of the linear part for
analysis of convergence of some types of fractal coders.

In this paper we look at the attractor coding from the
viewpoint of the systems theory, from which it becomes
clear how the concept of the stability of a dynamical sys-
tem provides a much more direct path to the convergence
of attractor coders compared to the concept of contractiv-
ity which is being widely used in the literature of fractal
coding. Using concepts from graph and matrix theory, we
also see how eigenvalues of the state transition matrix are
related to the structure of interdependence of the signal el-
ements, and to the spatial causality of system, in a variety
of cases. Finally, we take one step towards solving the gen-
eral problem by providing a link between the coe�cients
of the characteristic equation of the state transition matrix
and both the cycles in the ow graph of the system and
the stability of the system, using theorems from graph and
digital control theory.

2. MODELING ATTRACTOR CODING WITH

LINEAR SYSTEMS

An alternative point of view for analyzing attractor cod-
ing systems is to look at them as discrete-time systems [6].
Consider a discrete-time system with input un, output yn,
and state xn, as shown in Figure 1. The set of equations
that describe the relationship between input, output, and
state are called dynamical equations. Discrete-time systems
are usually described by dynamical equations that are in
the form

xn+1 = h(xn;un; n) (2)

yn = g(xn;un; n); (3)
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Figure 2: Block diagram of a linear time-invariant discrete-
time system

where (2) is called the state equation, and (3) is called the
output equation. If the system is time-invariant, these equa-
tions become

xn+1 = h(xn;un)

yn = g(xn;un):

For linear time-invariant (LTI) systems, then the dynamical
equations may be written as

xn+1 = Axn +Bun (4)

yn = Cxn +Dun; (5)

and may be represented by a block diagram as shown in
Figure 2.

Note that the operator point of view described by (1) is
equivalent to Equation (4) of a linear time-invariant system
when un is constant. In other words, we may consider x 2
X as the state of a system which changes at each time
step according to T . The systems point of view provides
for a more general class of attractor coders and may even
be extended for systems that change continuously in time,
as well as makes the connection between the young �eld
of attractor coding and the well-established �eld of systems
theory. Using the systems method, the output of the system
may be de�ned to be di�erent from (although a function of)
the state of the system.

A comparison between (1) and (4) shows that the most
common type of system being represented by attractor coders
is, in fact, a linear system in which (1) the image is the state
of the system, (2) the input is constant, (3) the initial im-
age is the initial state of the system, and (4) the attractor
is the steady state of the system. More interesting situa-
tions occur if we take the output equation (5) into account
and de�ne y1 as the �nal decoded signal in attractor cod-
ing. Then, if C is not identity, there may be state variables
that are variable in time whose changes indirectly a�ect the
output image. This has a strong relation to the concept of
hidden variables de�ned in [1]. For example, xn may be the
coordinates of an evolving 3-D set and y a projection of
that set into 2-D. The �nal decoded image is the projection
of the attractor of the state into a 2-D plane.

3. STEADY STATE, ENCODER ERROR, AND

DECODER ERROR

Now we concentrate our attention on Equation (4), assume
a constant input un and represent Bun simply by B:

xn+1 = Axn +B (6)

with the initial state x0. It can be shown that

xn � x1 = A
n
(x0 � x1) (7)

which shows an exponential convergence, if the state se-
quence (xn) is convergent.

Let us assume that we apply the recursive formula of
Equation (6) with x0 being the original signal (image) that
is encoded. We de�ne

eE
def
= x0 � x1 (8)

eD
def
= x0 � x1 (9)

and

"E
def
= jjeEjj

"D
def
= jjeDjj

and call "E the encoding error (or the collage error), and
call "D the decoding error. Then, it can be shown [7] that

eD = MeE ; (10)

x1 = MB; (11)

x0 = M(B+ eE); (12)

where M
def
= (I�A)�1: Equation (10) provides an explicit

relationship between the encoding error vector eE and the
decoding error vector eD, in contrast to the inequality of the
Collage Theorem, and may be used to obtain the following
bounds for "D,

"D �
"E

1 + jjAjj
(13)

"D �
"E

1� jjAjj
if kAk < 1: (14)

where (14) is the collage theorem in the discrete case. Equa-
tions (11) and (10) clearly show that the relationship be-
tween eD and eE is exactly the same relationship that x1
has with B. Equations (11), (10) and (12) are summarized
in Figure 3 and suggest that adding eE to B changes the ap-
proximate decoder output x1 to the exact output x0. This
may be interpreted that bothB and eE represent some type
of residuals in the encoding process, with the di�erence that
B is transmitted to the decoder, while eE is typically not.

Using the notation r
def
= B+ eE; it can be shown that

x0 = Ax0 + r: (15)

Ax0 and r represent the self-similarly encoded component,
and the residual component of x0, respectively, and B is
the approximation of r which is sent to the decoder. If r
was sent to the decoder without any error, then

r = B ) eE = 0 ) eD = 0 ) x0 = x1

or using (15), we would have x0 =Mr: This provides new
insight into the encoding process:
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Figure 3: Block diagram representing the relation between
B, x1, eE , eD, r, and x0

1. eE is the error in transmitting the residual r = x0 �

Ax0 to the decoder causing an error eD at the de-
coder.

2. By transmitting B to the decoder, the encoder is
practically encoding the residual of the image after
removing the self-similar component of the image.
Although this encoding is usually done by a simplistic
method of sending the average value of the residual
over each range block, more advanced techniques may
be used for better encoding of this residual.

3. In order to make a lossless coder/decoder, one obvi-
ous method is for the encoder to decode the image,
�nd eD, and send it to the decoder in addition to the
code for the fractal transform T . However, (12) sug-
gests the alternative approach of the encoder sending
eE rather than eD to the decoder. The decoder may
then subtract eE from B and begin decoding.

If � is an eigenvalue of A, from the de�nition of M it can
be shown that 1=(1 � �) is an eigenvalue of M and if �
is close to 1, the corresponding eigenvalue of M becomes
large and any component of eE along its eigenvector can
cause a corresponding large component in eD causing large
decoding error.

4. STABILITY, CONTRACTIVITY, AND

CONVERGENCE

The notions of contractivity and eventual contractivity are
the main basis for analysis on convergence of attractor de-
coders in the literature on fractal coding. However, from
the systems point of view, the convergence of the sequence
(xn) is extensively studied in terms of the stability of its
generating system [6]. The system described in (4) and (5)
is stable i� the eigenvalues of A have magnitudes less than
1, i.e., are located within the unit circle [6]. IfA is an N�N
matrix, and �1, �2; : : : ; �N are its eigenvalues, then

�(A) = max
1�i�N

j�ij

is called the spectral radius of A. Hence, the stability of the
system of (4) and (5) may be expressed as �(A) < 1.

In the literature, the rate of convergence of attractor
decoders is typically analyzed in terms of the contractiv-
ity factor of the operator T . For the linear time-invariant
case, this is reduced to kAk. However, in this work, we
propose that using the eigenvalues of A provides a more
powerful tool for analysis of convergence in attractor de-
coders. However, computing the norm of A for some norms
is easier than computing the eigenvalues. In the next sec-
tion, we will investigate methods for computing �'s using
ow graphs of the matrix A.

The relationship between convergence of the sequence
(xn) and contractivity of T can be written as

T

contractive

=)
(=n

T eventually
contractive

=)
(=n

8x; (T n(x))
convergent

However, the relationship between convergence of (xn) and
stability of the discrete-time system is

stable system () 8x; (T
n
(x)) convergent:

One di�culty with using contractivity for analysis of con-
vergence of (xn) is that contractivity is based on kAk < 1
which depends on the de�nition of the norm being used.
However, convergence of (xn) is independent of the metric
being used. There areA's for which some norms are greater
than 1 and some are less than 1. Although kAk < 1 is a
su�cient condition for convergence, the reverse is not true.
And, also, small kAk guarantees a fast convergence, but
again, in general, the reverse is not true. On the contrary,
�(A) < 1 is both a necessary and su�cient condition for
convergence and �(A) directly dictates the speed of conver-
gence in the long run as can be expected from (7).

5. GRAPH THEORETICAL APPROACH

5.1. Eigenvalues

In fractal image coding, image pixels are encoded by ap-
proximating them with other pixels in the same image. The
structure of matrix A is determined by the pattern and
level of interdependence of image pixels. However, each im-
age pixel is typically dependent on only a small number of
other pixels, and hence, the matrix A is very sparse. These
dependencies may be better analyzed if represented by a
ow graph. In such a representation, pixels are represented
by vertices (nodes) and their dependencies by weighted arcs
(edges). The resulting ow graph also provides a represen-
tation of matrix A. The eigenvalues of matrix A, and its
stability, can be determined when the ow graph A is of
any the following forms [7].

� single-path ow graph

� acyclic ow graph

� single-cycle ow graph

� multiple-component ow graph

� not-strongly-connected ow graph

� special cases of ow graphs with touching cycles

In general, touching cycles in the ow graph signi�cantly
complicate the eigenvalue problem. And in the general case



the relation between the spectral radius of A and these cy-
cles seems to be unknown. However, using concepts from
digital control theory we can establish links between these
two. In terms of stability, there are methods for determin-
ing stability of a system from coe�cient of its characteristic
equation without solving the characteristic equation [6, Sec-
tion 8-6][8, Section 6-3]. On the other hand, from a theorem
in graph theory, it can be shown [7] that the coe�cients of
the characteristic equation have graph theoretical interpre-
tations in terms of directed cycles of the Coates graph of
matrix A [9, pages 206{210].

5.2. Spatial Causality

We call a system described by (4) and (5) spatially causal
i� some permutation of A has zero elements, on and above
the diagonal, i.e., is lower triangular with zero diagonal ele-
ments, or equivalently, if the ow graph of A is acyclic. We
also call a system spatially semicausal if some permutation
of A is lower triangular. This happens i� the only cycles in
the ow graph of A are self-loops.

The concept of spatial causality in fractal coding has
been addressed in [10]. It can be proven [7] that that
spatial-causality is a su�cient condition for �nite-iteration
convergence. The concept of Jordan canonical form may
be used to prove that any system may be transformed into
a semicausal system by a proper change of basis [7]. If all
the eigenvalues of A are zero, then A can be transformed
into a causal system whose ow graph is made up of only
single-path components. If we further require that the basis
be orthonormal in CN , we use Schur's Theorem [11] may
be used [7] to prove that

Theorem: If the system xn+1 = AN�Nxn+BN�1 reaches
its steady-state inM iterations for any initial state x0, then
(1) all the eigenvalues of A are zero, (2) the system also
reaches its steady-state in N iterations (nontrivial when
N < M), and (3) there is a basis in CN such that the rep-
resentation of A in that basis has a graph made of only
directed path(s) with weights 1, and (4) there is an or-
thonormal basis in A such that the representation of A in
that basis has an acyclic graph.

However, it can be shown by example that spatial causal-
ity is not a necessary condition for �nite-iteration conver-
gence.

6. CONCLUSIONS

In this paper, attractor coders are studied as discrete-time
systems from the viewpoint of control systems theory. In
light of this theory, the relationships between the decoded
image, encoder error, and decoder error are investigated. It
is also shown that the concept of stability of the discrete-
time systems provides a more direct path to analyzing con-
vergence in the attractor decoders. In contrast to contrac-
tivity, stability of the decoder is both necessary and su�-
cient for convergence in the decoder. To analyze the stabil-
ity of these systems, a graph theoretical approach is used
for evaluating the eigenvalues of the state transition matrix.
At last, the e�ect of spatial causality of these systems on
the convergence of the decoder is studied.
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