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ABSTRACT

This paper investigates a transform adaptation tech-
nique, applied to transform coding of images, as a way
of exploiting the variation in local statistics within
an image. The method makes use of the relation-
ship between KLT and SVD, and their energy com-
paction properties. We compare this approach to a
standard KLT coding system. Motivated by increased
coding e�ciency an analysis-by-synthesis approach us-
ing switching between the KLT coding system and the
hybrid KLT-SVD system is proposed. The switching
is implemented using a global rate-distortion criterion.
The results are encouraging and the proposed tech-
niques provide new insights on how to use SVD in an
image compression system.

1. INTRODUCTION

The use of singular value decomposition (SVD) in im-
age compression is motivated by its energy compaction
property. The SVD is known to be the deterministically
optimal separable transform for energy compaction [1].
This means that for a given image block X of size
N � N , the use of k1, k1 < N , singular values and
2k1 vectors will produce the optimal least squares ap-
proximation using separable basis functions in k1 com-
ponents of this block. For comparison, the use of k2,
k2 = k1 Karhunen-Lo�eve coe�cients and 2k2 vectors
to approximate the same block will produce an opti-
mal approximation in the mean square sense, assuming
that the Karhunen-Lo�eve vectors (basis functions) are
obtained from the horizontal and vertical covariance
matrices of the image source. Note that the k1 sin-
gular values are chosen from the main diagonal of the
coe�cient matrix, where as the k2 KLT coe�cients are
chosen from any position in the coe�cient matrix, both
in order of decreasing magnitude (see Section 2). For
each block the least squares approximation will always
be better or equal to the mean square approximation.
However, in an SVD image compression system the
singular vectors are part of the representation which
must be quantized for every image block together with
the singular values. This will change the energy com-
paction properties and part of the total bit-rate must be

spent on the vectors. The best results for SVD image
compression are obtained by combining SVD and vec-
tor quantization (VQ) of the singular vectors [2, 3, 4].
The e�ect of using VQ on the singular vectors results
in a block adaptive transform coding system because
the transform of each block will approximate the fully
adaptive SVD transform. Previous work on adaptive
transform coding [5] shows that �nding the optimal
transform for each block is a complex task. In this work
we use the relationship between the Karhunen-Lo�eve
transform (KLT) and SVD to de�ne a block adaptive
transform with good energy compaction properties.
In Section 2 the fundamentals of SVD and KLT are

briey described and their relationship is discussed.
Section 3 describes both the new hybrid KLT-SVD
system and the analysis-by-synthesis system used to
switch between the KLT and hybrid KLT-SVD coding
methods. Speci�c simulation parameters are given i
Section 4 and the corresponding results are presented
and discussed in Section 5. Conclusions and proposals
for further work are presented in Section 6.

2. FUNDAMENTALS

2.1. Singular Value Decomposition

For a given image block X of size N � N the singu-
lar vectors ui and vi are found as the eigenvectors of
XXT and XTX, respectively. The singular values si
are equal to the square root of the nonzero eigenvalues
of both XXT and XTX. The block X can then be
represented by

X =USVT ; (1)

and the result of the transform is given by

S = UTXV; (2)

where
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U and V are orthogonal matrices and S is a diagonal
matrix with the singular values along the main diago-
nal.
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Figure 1. System description

2.2. Karhunen-Lo�eve Transform

A thorough description of KLT is given in [6]. In this
section we de�ne the separable KLT for a zero mean
image consisting of L image blocks of size N � N ,
X(1),X(2),...,X(L). The 2-D separable transform of one
image block X(i) is given by

C(i) = �T
vX

(i)�h; (4)

where �v and �h are given by
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(5)

'vi and 'hi are found as the eigenvectors of the verti-
cal and horizontal correlation matrices, Rxv and Rxh,
respectively. Rxv and Rxh can be estimated from the
data matrices Xv and Xh by

Rxv =
1

L
XT

vXv; and Rxh =
1

L
XT

hXh: (6)

The data matrices are given by

Xh =

2
64
X(1)

:
:

X(L)

3
75 and Xv =

2
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�
X(1)

�T
:
:�
X(L)

�T

3
775 :
(7)

The dimension of the data matrices is LN � N . The
coe�cient matrices C(i), i 2 [1; L] have in general ele-
ments cij 6= 0, and are not diagonal.

2.3. Relationship between KLT and SVD

We note that when the KLT is calculated over one im-
age block X only, the correlation matrices can be esti-
mated by

Rxv = XXT ; and Rxh = XTX; (8)

and the KLT is equal to the SVD transform for this
block. The corresponding coe�cient matrix C is diag-
onal and equal to S.
From the above we conclude that an important dif-

ference between SVD and KLT coe�cient matrices, S
and C(i), for a speci�c block is that S is a diagonal

matrix and C(i) is in general not a diagonal matrix.
A second di�erence is the assumption of a global KLT
for the whole picture, while the SVD needs a speci�c
transform for each block. For successful compression
we need to �nd e�cient bit representations for the
SVD transforms. Representing a matrix by its SVD,
see Equation (1), keeps the number of representation
values constant. The reason for this is the diagonal S
and orthogonal U and V matrices. However, previous
work [7, 8] show that �nding an e�cient bit represen-
tation of the U and V matrices is di�cult. Therefore,
in this work we propose a model where the �rst column
vectors in the U and V matrices are represented using
an ordinary quantization technique and the other col-
umn vectors are represented using an adaptation of the
KLT basis vectors. A closer description of this adapta-
tion is given in the next section. In a KLT compression
system we need to �nd e�cient bit representations of
only two N �N correlation matrices for each image to
be encoded.

3. SYSTEM DESCRIPTION

3.1. Hybrid KLT-SVD system

KLT is the optimal transform if only one transform is
to be used for all blocks in the image, but SVD provides
a better energy packing for a speci�c block. Therefore,
if a block adaptive transform is to be used, it makes
sense to create a system where approximations of the
SVD transform is used. We choose to obtain the ap-
proximation of the SVD transform vectors using vec-
tor quantization (VQ). The orthogonal property of the
transform matrices is preserved during the quantiza-
tion by using a Gram-Schmidt orthogonalization pro-
cedure [9] on the codebooks with regard to previously
found vectors. Separate codebooks need to be trained
for each ui and vi, i 2 [1; N ]. However, to save the
cost of using large codebooks for all vectors, it seems
reasonable to use the ith KLT vector as the only vector
in the codebook for some of the vectors. Hence, the re-
sulting transform matrix may be regarded as a hybrid
KLT-SVD transform, where the directions of the KLT
basis vectors are changed in order to approximate the
direction of the SVD basis vectors.
The coding system is shown in Figure 1. The bit-

allocation (BA) is performed using the greedy tech-
nique described in [10] (Chapter 8). Uniform scalar
quantizers (SQ) assuming a Laplacian pdf are used on



the transform coe�cients cij created from the block
adaptive transform Tb. The c11 coe�cients are orga-
nized in a low-pass band image and an image adaptive
third order DPCM system is used in the quantization
of this band.

3.2. System with switching

It is clear that using the hybrid KLT-SVD trans-
form described above has its cost in bit-rate, and for
some blocks the KLT transform will perform very well.
Therefore, it makes sense to consider a method which
switches between pure KLT and hybrid KLT-SVD. De-
pending on the chosen quantization scheme this switch-
ing can be done for each N �N block or for a range of
N � N blocks. We de�ne the subband domain to con-
tain N � N subbands such that each transform coe�-
cients cij is located in subband i; j. The position within
a subband is given by the position of the corresponding
block in the image domain. Using bit-allocation with
block size B �B in the subband domain makes it nat-
ural to perform the switching on NB � NB blocks in
the image domain. In our coder both the KLT and
the hybrid KLT-SVD coder must be run before the
switching decision is taken, hence the hybrid KLT-SVD
coder with switching becomes an analysis-by-synthesis
system. The switching is done using a Lagrange tech-
nique which minimizes the total image reconstruction
distortion under a rate constraint [11, 12]. For each
NB � NB block i, i 2 [1::L], in the image domain we
are able to �nd the rate and corresponding distortion
of both the KLT and the hybrid KLT-SVD system. We
de�ne the rate and corresponding distortion of the two
systems to be Ri;j and Di(Ri;j) for i 2 [1::L]. j = 1 for
the KLT system and j = 2 for the hybrid KLT-SVD
system. The switching is then performed by choosing
Rij for each i 2 [1::L] so that the following Equation is
minimized,

min
Rij

"
LX
i=1

Di(Rij) + �Rij

#
; (9)

under the constraint

LX
i=1

Rij = RT : (10)

In Equations (9) and (10) j = 1 or j = 2 and RT

is a bit-rate threshold. Realizing that for a �xed �
Equation (9) may be written

LX
i=1

min
Rij

[Di(Rij) + �Rij] ; (11)

we note that a solution can be found by deciding which
transform j to use for each NB�NB block i and then
iterate over � until the constraint in Equation (10) is
met.
This method may easily be generalized by using more

than two alternatives to switch between. Evidently,

the cost of the generalization will be an increase in
complexity and side information.

4. SIMULATIONS

The simulationswere performed on the luminance com-
ponent of the image Lenna of size 512�512. The trans-
form block size was 8�8. The hybrid KLT-SVD trans-
form was found by quantizing only the �rst singular
vectors (u1 and v1) using a 6 bit vector quantizer, and
then creating the other transform N � 1 basis vectors
by orthogonalization of the KLT basis vector number
k with respect to the previously found k � 1 vectors,
k 2 [2::N ]. Here N = 8. A bit-allocation block size of
4� 4 was used. Hence, the block size in the coder us-
ing switching was 32�32. The quantization in the low
pass band was performed on the prediction error us-
ing a third order image adaptive DPCM con�guration.
Quantization in the other subbands were performed
on normalized samples with normalization factor equal
to the class standard deviation of the corresponding
bit-allocation class. Eight classes were used. Uniform
quantizers assuming a Laplacian pdf were used in all
subbands. The KLT reference coder used image depen-
dent transform matrices found as described in Section
2. The bit-allocation and quantization methods were
identical for all three coding systems.

5. RESULTS

The coding results are given in Figure 2. The side
information of the bit-allocation, approximately 0.10
bpp, is included in the bit-rate. Comparing the pure
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Figure 2. Coding results KLT (solid), Hybrid
KLT-SVD (dashdot) and System with switching
(dashed)

KLT to the hybrid KLT-SVD scheme we see that KLT
gives the best results. However, the quantization of
the u1 and v1 vectors in the hybrid KLT-SVD scheme
has a cost of 0.1875 bpp. If we, for a moment, do
not include this bit-rate in the total bit-rate we see
that the hybrid KLT-SVD scheme gives an improved



result. This con�rms the assumption that using an
approximate SVD transform may increase the energy
compaction compared to using KLT. However, the cost
on the total bit-rate from the vector quantization of
the singular vectors is high, indicating that an adaptive
switch between KLT and hybrid KLT-SVD is needed.
Further on, we see that using the previously described
system with switching gives an improvement of 0.1 -
0.4 dB compared to the pure KLT system.
When using the switching system it is interesting to

�nd out how many blocks are used from the KLT codec
and how many blocks are used from the hybrid KLT-
SVD codec. In our simulations the percentage of used
hybrid KLT-SVD blocks varied from 3.1 % to 9.8 %.
In Figure 3 we show the reconstructed image using the
switching system at a bit-rate of 0.77 bpp. Here 25
out of 256 blocks are coded using the hybrid KLT-SVD
codec. The blocks using hybrid KLT-SVD are marked
with a white border. It is di�cult to �nd a pattern of
which method that is used for the di�erent blocks, but
the knowledge of SVD indicates that transform blocks
within the chosen 32� 32 blocks have low rank.

Figure 3. System with switching: bit-rate 0.77
bpp PSNR 34.84 dB, hybrid KLT-SVD blocks
are marked

6. CONCLUSIONS

The main contribution of this paper is the use of the re-
lationship between KLT and SVD as a basis for creating
a hybrid KLT-SVD transform which exploits the local
statistics within an image. The presented results show
that better reconstruction is achieved using the hybrid
KLT-SVD transform instead of using KLT. However,

the cost measured in terms of bits using this transform
for every block is quite high. Therefore, further in-
vestigations �nding a scheme using switching between
the KLT and the hybrid KLT-SVD transform in order
to enhance the performance and reduce the bit-rate
was performed. The proposed scheme outperformed
the KLT transform by 0.1 - 0.4 dB. Variable length
coding will further enhance the rate-distortion perfor-
mance.
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