
DISTORTION/DECODING TIME TRADEOFFS IN SOFTWARE DCT-BASED
IMAGE CODING

Krisda Lengwehasatit Antonio Ortega

Integrated Media Systems Center
Department of Electrical Engineering-Systems

University of Southern California
Los Angeles, California 90089-2564

Phone: (213) 740-4679, Fax: (213) 740-4679
E-mail: lengweha@sipi.usc.edu and ortega@sipi.usc.edu

ABSTRACT

We present a general framework for variable complexity
algorithms (VCA) and study the related issue of de�ning
a minimum average complexity implementation. As an
example we consider implementations of the inverse DCT
(IDCT) which minimize the average computation time by
taking advantage of the sparseness of the quantized input
data. Since the decoding speed depends on the number of
zeros in the input we then present a formulation that en-
ables the encoder to optimize its quantizer selection so as
to meet a prescribed \decoding time budget". This leads
to a complexity-distortion optimization technique which is
analogous to well known techniques for rate-distortion op-
timization. In our experiments we demonstrate signi�cant
reductions in decoding time.

1. INTRODUCTION

The Discrete Cosine Transform (DCT) is by far the most
popular transform used for image compression applications
[1, 2]. Reasons for its popularity include not only its good
performance in terms of energy compaction for typical im-
ages but also the availability of several fast algorithms [3].
While we concentrate on the DCT, most of our develop-
ments are directly applicable to other orthogonal trans-
forms. One common factor in all the fast algorithms pro-
posed for hardware implementation of DCT, see for example
[4], is that they aim at reducing the complexity of a generic
direct or inverse DCT, regardless of the input to be trans-
formed. Therefore complexity is estimated by the number
of operations which is the same for every input. However it
is easy to verify that for typical scenarios the image blocks
on which IDCT has to be performed are very sparse.
A question naturally arises in evaluating a compression

algorithm, namely, whether the performance achieved (e.g.
in terms of distortion for a given rate) justi�es the re-
quired complexity. Initial steps in evaluating these com-
plexity, rate and distortion trade-o�s can be found in [5],
where block transforms of various block sizes are compared.
A more complete theoretical framework is described in [6]
where a distortion-computation function is de�ned and ex-
amples are given for block transforms of di�erent sizes. In
both cases the complexity estimates were not input depen-
dent and the study concentrated on the encoder complexity.
In this work we focus on the decoder complexity and

study the achievable performance for a given input to the
decoder1. As will be seen, in order to minimize the av-
erage complexity one may need to resort to variable com-
plexity algorithms (VCA), i.e. algorithms which require a
variable, input-dependent, amount of time to complete a
task. The analogy with variable length coding is quite ob-
vious. As in the coding case, a VCA matched to the input

1i.e. given a statistical characterization of the input

data will result in reduced average complexity as compared
to a �xed complexity implementation. The only require-
ment to achieve this gain is then the existence of classes of
inputs for which the operation at hand can be computed
faster. In this work we consider an example of such a sce-
nario, namely, that of the computation of the inverse DCT
(IDCT) transform, and show how a VCA can be designed,
similar to those used in public domain software implemen-
tations of image/video codecs (e.g. [7, 8, 9]). Note that
the sparseness of the quantized blocks in the DCT domain
has been used to speed compressed domain manipulation
[10], however the statistical input dependences have been
left unexplored.
Our motivation comes from observing the increased im-

portance of software implementations for various compres-
sion applications (e.g., software-only decoders for H.263
video, JPEG coders/decoders images used for Internet ap-
plications). This trend is likely to continue as faster hard-
ware becomes available and innovative uses of software, for
example usage of JAVA applets, become widespread. In
these circumstances optimizing the performance of the al-
gorithms for the speci�c case of software operation is all the
more important. Another example of an application of our
framework is the design of Asynchronous circuits which al-
low operations to be completed in a variable time and where
the decision on when to complete an operation should be
driven by the type of input [11].
The paper is organized as follows. Section 2. introduces

a formal framework for VCAs. Section 3. shows an example
of optimization of average complexity in a VCA implemen-
tation of the IDCT. In Section 4. we introduce the idea of
optimizing the distortion of the source for a given total com-
plexity at the decoder. Experimental results are provided
to demonstrate the performance.

2. VARIABLE COMPLEXITY ALGORITHMS

Assume a generic algorithm which takes an input from a
set I and maps it into an output from a set O. In the case
of a size 8 IDCT I = O = R8. In order to have a VCA
it is necessary to de�ne di�erent versions of the algorithm
which are matched to the various inputs. For example, in
the IDCT case one can classify inputs depending on how
many zeros they contain so that simpler versions of the
algorithm are available for those inputs with more zeros.
For simplicity assume a discrete set of inputs f1; 2; : : :Ng

each with a corresponding probability of occurrence p(i).
Assume that the set of available implementations of our
algorithm is also �nite A = fA0;A1; : : : ;Akg and each al-
gorithm has a �xed complexity c(Aj). Note that not all the
implementations may be suitable for all inputs, i.e. some
implementations may not yield exact results2 . For exam-
ple, an IDCT algorithm which assumes that the �rst 4 co-

2The exactitude of the algorithm could be made part of
the trade-o�s by considering it to be an additional source of

e�cients in a vector are zero is not suitable for inputs not
having this property. Let Ai � A be the set of algorithms
providing an exact result for input i. We will assume that
A0 is an algorithm which gives an exact result for all pos-
sible inputs. Our goal is thus to outperform this baseline
algorithm approach which will have a �xed complexity of
c(A0) for every input. Note that this may not always be
possible depending on the characteristics of the input.
Given c(Aj) and p(i), call �T the average computation

cost for an implementation achieving exact results. Before
we deal with the IDCT case we concentrate on determining
bounds on �T . As will be seen, the key lies in the classi�ca-
tion of the input. Assume that we exactly know what input,
out of the N possible ones, has to be processed, and this
without any classi�cation computation cost. Then, clearly,
for a given input i we should use

A
?
i = arg min

Ak2Ai

c(Ak); (1)

that is, the minimum cost algorithm among those giving an
exact result for input i. Thus we can write that

�T �

NX

i=1

p(i) � c(A?
i): (2)

This will be unlikely to be a tight bound since classi�cation
cost was not considered.
To obtain a more realistic cost estimate one needs to take

into account the input classi�cation. Indeed, the problem of
�nding the optimal average complexity is really a classi�ca-
tion problem. Assume that we partition the input set I into
L classes, C = fC1; C2; : : : ; CLg, s.t. as usual, [

L
l=1Cl = I

and Ci \ Cj = ;, 8i 6= j. Let sl be the cost of classifying
an input in class l. We assume that it costs the same to
classify any input for a given class. For each set Cl in the
partition we will use a single algorithm and we impose the
constraint that it is an exact algorithm for all the elements
of the set. Thus we de�ne the allowable algorithms for set
Cl so that A0

l = \j2Cl
Aj, which will at least contain A0.

Thus, as before, each class should use the fastest available
algorithm

A
0?
l = arg min

A0

k
2A0

l

c(A0
k); (3)

and the overall cost will be

�T (C) =

LX

i=l

(
X

i2Cl

p(i)) � (c(A0?
l) + sl); (4)

where clearly the expected average cost depends on the clas-
si�cation. Thus �nding the optimal cost for given I and A
requires �nding the classi�cation C? which minimizes �T (C).
In general it may not be possible to �nd general bounds,
we now consider the particular case of classi�cation for the
IDCT where optimal results can be achieved.

3. IDCT OPTIMIZATION

To the best of our knowledge, only one previous published
work, by Froitzheim and Wolf [12] (FW), has formally ad-
dressed the problem of minimizing the IDCT complexity in
an input dependent manner, based on detecting zero coe�-
cients in the input block. Numerous software implementa-
tions of IDCT available in the public domain do take into
account the sparseness to achieve image decoding speed-up
[7, 8, 9]. However, these methods seem to be based on trial

distortion.

X0

X4

X6

X2

X7

X1

X3

X5

Rot

+

- π
16

+ Rot

+
π

16

+

-

C4

C4

C4

C4

x0

x1

x2

x3

x4

x5

x6

x7

where is subtraction from and is addition to.

Rot
π

16

1ststage 2ndstage 3rd stage

y0

y1

y2

y3

y4

y5

y6

y7

z0

z1

z2

z3

z4

z5

z6

z7

Figure 1. Inverse DCT algorithm by Vetterli-
Ligtenberg where Rot(Q) is a rotation operation
mapping [x;y] to [X;Y] such that X = x cosQ+ y sinQ
and Y = �x sinQ+ y cosQ.

and error for typical images. In [13] we presented a system-
atic procedure to obtain the fastest, in the average sense,
IDCT algorithm for a given image or set of images. A brief
description of the algorithm follows; additional details can
be found in [13].
As discussed above, input classi�cation is key in VCA de-

sign. Out of the many di�erent classi�cation methods, we
de�ne an input class to be a set of vector inputs having zero
coe�cients at certain positions. For example all the DCT
inputs where all the coe�cients are zero belong to a class
and all the inputs which are zero in the �rst 4 components
and non-zero elsewhere belong to a di�erent class. Thus,
for a size 8 DCT we have 256 di�erent classes of inputs. To
each class i, where i 2 f0; : : : 2b�1g is the integer value cor-
responding to the position of the zeros for a vector of size
b, we can associate an empirical probability pi based on
typical compressed images. Clearly, inputs with more zeros
result in potentially faster IDCT implementations as oper-
ations involving zeros can be skipped. For example an all
zero input (i.e. Class 0) would require no operations while
a Class 255 input would require the maximum number of
operations. We �rst select the Chen-Wang (CW) algorithm
[14]3 as our baseline algorithm. For each input class one can
�nd an exact IDCT implementation with minimum number
of operations which will be referred to as the reduced IDCT
version for a given class.
The baseline IDCT (see Fig. 1) structure involves several

stages at which groups of 2, 4 and 8 coe�cients are the in-
put to a basic operation. We thus select a tree-structured
classi�cation which successively tests to determine whether
sets of 8, 4 and 2 input coe�cients are zero (see Fig 2 for
a size 4 IDCT example). Let Sx0x2x1x3 represent a class
of inputs where subscript xj provides the available infor-
mation for the j-th coe�cient in the IDCT and can take
the following values: (i) n 2 f1; 2; :::g when at least one of
the coe�cients indexed with this number is nonzero, (ii) 0
when xj is known to be zero and (iii) d when xj can be
either zero or nonzero (don't care). As an example of S11d0
means that at least one of fx0; x2g must be nonzero, x1 is
a \don't care", i.e. we have no information about it, and
x3 is known to be zero. The classi�cation tree in Fig 2 op-
erates in a hierarchical (testing successively on 4, 2 and 1
coe�cients) but does not indicate in which order the tests
should be performed. The goal is then to �nd the best clas-
si�cation, that is, to determine (i) the best order in which
to apply the tests and (ii) which tests it is worth perform-
ing (in the sense of reducing the average complexity) given
that testing for zeros in the input carries an associated cost.

3Both the reduced number of operations and the �xed point
arithmetic implementation motivate this choice.

We now present experimental results obtained with the op-
timized tree-pruning algorithm proposed in [13].

Sdddd

S0000
S1111

S0011 S1100 S1122

S0001 S0012
S0010 S0100

S1000 S1200 S0102 S0120
S0123 S1002 S1020 S1023 S1203 S1230 S1234

Figure 2. Classi�cation diagram for a given input
into 16 possible classes.

In our experiments we implement a simple software image
decoder based on the tree-structured classication scheme
described above. For the sake of praticality, we use a set of
approximated weights for the di�erent operations involved
(additions, multiplications, logical operations, etc) in our
optimization. Fig. 3 indicates that the experimental re-
sults in (b) are su�ciently close to those predicted by the

model (a)4. In Fig. 3 all the values are normalized by the
complexity of the baseline CW algorithm [14] without any
zero tests. Note that signi�cant reductions in complexity
are possible. Other than our optimized algorithm and FW
[12] we give results for the CW algorithm with all-zero test,
and CW with all-zero test for the �rst 1-D IDCT and ac-
zero test for the second 1-D IDCT (since after the �rst 1-D
IDCT, it is more likely for typical images that only the DC
coe�cient in the 1D vector is non-zero). Results are given
for various MSE values. Note that our algorithm is robust
even used at an MSE di�erent from what it was designed
for (see Fig. 3(b)).

4. OPTIMIZING ENCODING FOR A GIVEN
DECODING TIME

As described in the previous section a VCA implementa-
tion of the IDCT can be obtained given a \typical" set
of input images. As is clear from the results, the coarser
the quantization the faster the decoder can run. Thus, a
decoder based on a VCA IDCT (or several di�erent IDCT
algorithms) is inherently computation scalable. The encoder
can control the decoding speed by assigning to each block
one out of several available quantizers (coarser quantizers
result in faster operation).
The question arises then of how to optimally select those

quantization steps for a given decoding time budget. This
leads to a formulation where the encoder operates based on
a complexity-distortion (C-D) trade-o�, rather than on the
traditional rate-distortion (R-D) trade-o�. As an applica-
tion, one could for instance store images to be downloaded
by di�erent types of hosts so that the slower hosts can ac-
cess lower quality images but which can be decoded more
quickly. Similarly, the quality of the decoded images can
be selected based on the load of the shared host. The prob-
lem can be formalized as �nding the quantizer assignment
fj; igopt such that

X

j

Dj(i) is minimized while
X

j

Tj(i)) < Tbudget:

Where Tbudget is the total time (or complexity) budget,
Dj(i) and Tj(i) are, respectively, the distortion and decod-
ing time when quantizer i is used for block j. The problem

4Note that in Fig. 3(b) we depict the normalized total decod-
ing time and thus reduction in complexity is not as signi�cant in
relative terms as in Fig. 3(a).

can be solved using the well-known Lagrangian multiplier
method [15]

fj; igopt = argmin
fj;ig

(
X

j

Dj(i) + � �
X

j

Tj(i))

where � � 0 is the Lagrange multiplier, which will have to
be adjusted selected so that the budget is met.
Figs. 4 and 5 summarize our results. Fig. 4 indicates

that appropriate quantizer allocation for each block results
in very signi�cant reductions in complexity. As expected
the C-D allocation outperforms the other methods. Note
that in Fig. 4 we compare the C-D allocation when mul-
tiple algorithms are used (one for each quantizer, 'x') and
when a single algorithm is used for all quantizers ('+' and
'*'). When a coarse quantizer is used in the design ('*')
the performance is very close to that of the multiple algo-
rithm approach. For the actual decoding tests we thus use
a single algorithm. Each point in the C-D optimized curves
is obtained with a given parameter �. Figs. 5 (a) and (b)
demonstrate how a complexity driven quantizer allocation
('*') di�ers from its rate driven counterpart ('x'). As ex-
pected better R-D performance is expected if a rate budget,
rather than a complexity budget, is used.

REFERENCES

[1] W. Pennebaker and J. Mitchell, JPEG Still Image Data
Compression Standard. Van Nostrand Reinhold, 1994.

[2] J. Mitchell, W. Pennebaker, C. E. Fogg, and D. J.
LeGall, MPEG Video Compression Standard. New
York: Chapman and Hall, 1997.

[3] K. Rao and P. Yip, Discrete Cosine Transform, Al-
gorithms, Advantages, Applications. Academic Press,
1990.

[4] A. Ligtenberg and M. Vetterli, \A discrete Fourier/co-
sine transform chip," IEEE J. on Sel. Areas in Comm.,
vol. SAC-4, pp. 49{61, Jan 1986.

[5] M. J. Gormish, Source Coding with Channel, Distor-
tion and Complexity Constraints. PhD thesis, Stanford
University, Mar. 1994.

[6] V. Goyal and M. Vetterli, \Computation distortion
characteristics of block transform coding," in Proc. of
ICASSP'97, (Munich, Germany), Apr. 1997.

[7] \The independent JPEG's group software JPEG, ver-
sion 6." ftp://ftp.uu.net.

[8] \MPEG video software decoder, v2.2."
http://bmrc.berkeley.edu/projects/mpeg/.

[9] \vic:UCB/LBL video conferencing tool."
ftp://ftp.ee.lbl.gov/conferencing/vic/.

[10] N. Merhav and V. Bhaskaran, \A transform domain
approach to spatial domain image scaling," in Proc. of
ICASSP'96, (Atlanta, GA), pp. 2405{2409, May 1996.

[11] S. M. Nowick, K. Y. Yun, P. A. Beerel, and A. E.
Dooply., \Speculative completion detection for the
design of high-performance asynchronous dynamic
adders," in Proc. of Intl. Symp. on Advanced Res. in
Async. Circuits and Systems (ASYNC), 1997.

[12] K. Froitzheim and H. Wolf, \A knowledge-based ap-
proach to JPEG acceleration," in Proc. of IS&T/SPIE,
(San Jose), Feb. 1995.

[13] K. Lengwehasatit and A. Ortega, \DCT computation
with minimal average number of operations," in Proc.
of VCIP'97, (San Jose, CA), Feb. 1997. To appear.

[14] Z. Wang, \Fast algorithms for the discrete w transform
and for the discrete fourier transform," IEEE Trans. on
Signal Proc., vol. ASSP-32, pp. 803{816, Aug. 1984.

[15] Y. Shoham and A. Gersho, \E�cient bit allocation for
an arbitrary set of quantizers," IEEE Trans. on Signal
Proc., vol. 36, pp. 1445{1453, Sept. 1988.

10 20 30 40 50 60 70
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

MSE

co
m

pl
ex

ity
Estimated complexity for lenna

(a)

10 20 30 40 50 60 70
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

MSE

co
m

pl
ex

ity

Actual experimental time for lenna (total decoding time)

(b)

Figure 3. Normalized results for lenna (CW=1): (a) estimated IDCT complexity, (b) experimental decoding
complexity. In (a) we compare, CW with all-zero test ('+'), CW with all-zero test for the �rst 1-D IDCT
and ac-zero test for the second 1-D DCT ('x'), FW ('*'), tree-structured classi�cation ('o'), and algorithm
with no classi�cation cost ('-�'). For (b) we also have results for optimized trees designed with di�erent
inputs witj MSE=14.8 ('--') and MSE=60.66 ('-�').

10 20 30 40 50 60 70
0.2

0.3

0.4

0.5

0.6

0.7

0.8

MSE

co
m

pl
ex

ity

Estimated complexity/distortion curve

(a)

10 20 30 40 50 60 70
0.55

0.6

0.65

0.7

0.75

0.8

0.85

MSE

co
m

pl
ex

ity

Experimental distortion/complexity curve

(b)

Figure 4. (a) estimated IDCT complexity (b) experimental decoding complexity. Results for optimized
tree-structured algorithm for each quantizer ('o'), C-D curve with di�erent algorithms for each quantizer
('x'), C-D curves using a single algorithm optimized for MSE=60.66 ('*') and MSE=14.80 ('+').

10 15 20 25 30 35 40 45 50 55 60
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

MSE

co
m

pl
ex

ity

Comparison of complexity between comp./dist. and rate/dist.

(a)

10 15 20 25 30 35 40 45 50 55 60
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MSE

ra
te

 (
bp

p)

Comparison of rate between comp./dist. and rate/dist.

(b)

Figure 5. C-D (a) and R-D (b) curves achieved with either a complexity ('x') or a rate ('*') budgets.

