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ABSTRACT

A distortion-computation function D(C) is de�ned as the
minimum expected distortion in computing some quan-
tity while using no more than C computational units.
In a communication framework, where the computa-
tional problem is to determine a representation that
can be transmitted with expected rate not exceeding R,
this gives slices of a rate-distortion-computation surface.
The convexity of distortion-computation functions and
rate-distortion-computation surfaces is asserted. Trans-
form coding is studied as a particular instance of this the-
ory. Explicit comparisons between the e�cacies of the
Karhunen-Lo�eve Transform and the Discrete Cosine Trans-
form for coding of a Gauss-Markov source are given. Results
are also given on joint optimization of the block length and
the computational precision.

1. INTRODUCTION

Computational complexity is by no means a revolutionary
concern|in general or in source coding. All coding stan-
dards, e.g. JPEG and MPEG, are compromises between
computational complexity and performance. It seems, how-
ever, that consideration of complexity in source coding is
often reduced to a binary determination: \too complex" or
\not too complex." This is not satisfactory; comparisons
between algorithms should be done by comparing their per-
formances with a �xed computational budget. Since many
coding methods are at least partially computation-scalable
(for example by changing the block size in block transform
coding or vector quantization), this is a sensible objective.
In this paper we propose a systematic way to study the

relationship between computational complexity and coding
performance. Our de�nitions create a framework analogous
and complementary to rate-distortion theory. The similar-
ity to rate-distortion theory is intended to make the de�ni-
tions seem familiar to those working in information theory
and communications.
This theory is applied to assess the e�cacy of the

Karhunen-Lo�eve Transform (KLT) and the Discrete Cosine
Transform (DCT) for block transform coding of a Gauss-
Markov source. Stochastic simulations are avoided through
the use of reasonable approximations and explicit calcula-
tions.

2. DEFINITIONS AND BASIC PROPERTIES

Let P be a set of computational problems which are posed
according to some underlying probability distribution and
let � be a distortion measure on approximate solutions to
problems in P. Suppose also there is a computational cost
function on algorithms for (approximately) solving P 2 P,
c : A�P ! R

+ , where A is a set of such algorithms. Then

de�ne the distortion-computation function for P by

D(C) = min
fA2A:Ec(A;P )�Cg

E�(P;A(P )): (1)

In the context of source coding, we can specialize the def-
inition. Consider the problem to be �nding an approxi-
mate representation of a source with expected rate bounded
above by R. Denote the source and the reproduction by x
and x̂, respectively. Then, taking R as a parameter,

DR(C) = min
fA2A:Ec(A;x)�C;`(x̂)�Rg

E�(x; x̂); (2)

where `(x̂) is the entropy rate of x̂. Since

lim
C!1

DR(C) = D(R);

a point on the distortion-rate function, (2) describes a 3-D
surface with the property that in the limit C ! 1 one
obtains the distortion-rate function.
Assuming the set of algorithms allows multiplexing be-

tween operating points, the following basic theorems can
be proven by using probabilistic multiplexing arguments:1

Theorem 1: D(C) is convex.
Theorem 2: The D-R-C surface is convex, i.e. given C1 �
C2 and R1 � R2,

DR�
(�C1 + (1� �)C2) � �DR1

(C1) + (1� �)DR2
(C2);

for all � 2 [0; 1], where R� = �R1 + (1� �)R2.
As in rate-distortion theory, a system that is described

by parameters chosen from discrete sets will not necessar-
ily have a convex operational distortion-computation func-
tion (or rate-distortion-computation surface). However, as
above, convexity can be assured by multiplexing.

3. TRANSFORM CODING

The usual justi�cation of using the Discrete Cosine Trans-
form (DCT) rather than the Karhunen-Lo�eve Transform
(KLT) in transform coding is that the DCT is a �xed
transform which can be implemented with a fast algorithm.
Thus, even if the KLT would give better rate-distortion per-
formance than the DCT for a �xed block size n, the DCT
may be preferable because it makes larger values of n feasi-
ble. The distortion-computation function approach allows
a precise characterization of this phenomenon.
As an example, we will consider the transform coding

(with scalar quantization) of a Gaussian �rst-order autore-
gressive sourceX with correlation coe�cient �, i.e. a source

with autocorrelation sequence rX(m) = �jmj. Distortion is

1The proofs require that, at a minimum, a single Bernoulli
random variable can be generated with a �nite computational
cost.
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(a) Source correlation coe�cient � = 0:9 (b) Source correlation coe�cient � = �0:9

Figure 1. Operational D(n) for DCT and KLT coding of an AR(1) source at rate 0.5 bits/sample. A high resolution
approximation, performance with no transform, and the theoretical bound are also shown. Note that the block size is given
on a logarithmic scale.

measured by MSE per sample. We will �rst consider algo-
rithms based on an exactly computed transform followed by
quantization, and we will measure complexity by the num-
ber of general multiplications.2 This case allows for many
precise statements but, as will be discussed, is of limited
practical consequence. We then consider the more practical
case where a transform is computed with �nite precision
and the result is then quantized.

3.1. Coding with exact computations

3.1.1. Computing distortion

As a preliminary to �nding operational distortion-
computation functions for DCT and KLT coding, we �rst
study the D(R) performance of these methods as the block
size n is varied. In this step we must make certain assump-
tions about the coding process, namely in relation to the bit
allocation and design of the scalar quantizers, but we need
not make any assumptions about the computational model.
For comparison we also exhibit the performance attained
without any transform and the optimal performance attain-
able for any method that forms n-tuples from the source and
codes them independently.3

Denote the KLT for block size n by Tn, i.e. TnRXT
T
n =

�, where � is a diagonal matrix with nonincreasing entries.
Let U denote a DCT matrix given elementwise by4

uij =

� p
2
n
cos(�

n
(i� 1)(j � 1

2
)) i = 2; 3; : : : ; np

1
n
cos(�

n
(i� 1)(j � 1

2
)) i = 1

Since the quantization is scalar, the performance depends
only on the transformed component variances, which are
given (without regard to ordering) by (�1; �2; : : : ; �n) =

diag(TnRXT
T
n ) and (�1; �2; : : : ; �n) = diag(URXU

T ) for
KLT and DCT coding, respectively.
For large n we can make the approximation

�k � �k � SX(
2�k
n
); (3)

2Multiplications in which one or more multiplicands are ra-
tional are not counted.

3The latter quantities are Rn(D) points as de�ned in [1].
4This is the \original" DCT �rst reported in [2] and classi�ed

as DCT-II in [3].

where SX(!) =
1��2

1�2� cos !+�2
is the power spectral density

of X [4, 5]. This approximation, however, dismisses the
coding gain di�erence between the KLT and the DCT and
obscures the dependence on n, so in the remainder of the
paper we will use the exact values for the �k's and �k's.
Using high rate approximations and assuming optimal

scalar quantization leads to the following optimal (arbitrary
real) bit allocation for coding at rate R bits/sample:

bi = R+
1

2
log2

�i

�2
; where �

2
=

 
nY
i=1

�i

!1=n

(4)

Under these assumptions, the distortion is given by the fol-
lowing expressions [6]:

DKLT =

p
3

2

 
kY
i=1

�i

!1=n

2
�2R

DDCT =

p
3

2

 
kY
i=1

�i

!1=n

2�2R

Using the true component variances we obtain the dotted
D(n) curves shown in Fig. 1. By abandoning high rate ap-
proximations one can obtain more precise results. In partic-
ular, instead of using approximate expressions for optimal
companding, we computed the performance using nonneg-
ative integer bit allocation according to a greedy algorithm
[6, x8.4] and uniform quantization with optimal loading.
These results are also shown in Fig. 1, along with the per-
formance obtained with no transform and Dn(R). Note
that for � = 0:9, the performance of KLT coding is vir-
tually indistinguishable from that of DCT coding. On the
other hand, the performance gap is signi�cant for � = �0:9,
although as in the previous case, the DCT is asymptotically
equivalent to the KLT. Also, the high rate approximations
are quite poor; they even give distortion values below the
theoretical minimum. The discrepancy arises largely from
not enforcing a nonnegativity constraint on the bit alloca-
tion. Distortions calculated based on greedy nonnegative
integer bit allocation and optimally loaded quantizers are
used below.
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Figure 2. Operational D(C) for DCT and KLT coding of
AR(1) sources with correlation coe�cients � = �0:9 and
� = 0:9 at rate 0.5 bits/sample. The complexity is based
on implementations that minimize the number of multipli-
cations. The block sizes are powers of two.

3.1.2. Estimating computational load

Consider �rst the computational complexity measure
given by the number of multiplications between arbitrary
real numbers per input sample. This model is familiar be-
cause of its connection to Winograd convolution algorithms
and provable complexity lower bounds [7, 8].
The computation of any square linear transform of size n

can be viewed as a multiplication between an n� n matrix
and an n � 1 vector. Since the KLT does not in general
have a structure conducive to a fast algorithm, the KLT
algorithms that minimize the number of multiplications are
simply those that use the most e�cient matrix multipli-
cation techniques. For convenience, we will assume that
n = 2s, s 2 Z+. To code n vectors at a time would entail
multiplying pairs of n�n matrices, which can be done with

nlog2 7 multiplications using Strassen's method [7]. Normal-

izing by the n2, the number of samples transformed in each
multiplication, gives a multiplicative complexity of

CKLT = n
(log

2
7)�2

multiplies/sample. (5)

On the other hand, the special structure of the DCT allows
calculations to be done much more e�ciently than as a gen-
eral matrix multiplication, especially when n is a power of
two. The minimum number of multiplications to compute
a length-n DCT is 2n� log2 n� 2 [8]. Normalizing gives

CDCT = 2 � 1
n
(log2 n� 2) multiplies/sample. (6)

When using moderate block sizes and usual computer
architectures, algorithms that minimize the number of mul-
tiplications are generally not e�cient. For example, while
Strassen's algorithm for multiplying a pair of 2 � 2 matri-
ces uses only 7 multiplications (instead of the usual 8), it
increases the number of additions from 4 to 18. Similarly,
DCT algorithms that have very low numbers of multipli-
cations tend to have more additions and more complicated
data ow. Therefore we would like to also compare multi-
plicative complexity for typical implementations of the KLT
and DCT.
Performing the KLT using typical matrix-vector multi-

plication requires n2 multiplications. If m < n of the trans-
formed components are allocated bits in the coding, the
computational load can be reduced to mn multiplications
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Figure 3. Operational D(C) for DCT and KLT coding of
AR(1) sources with correlation coe�cients � = �0:9 and
� = 0:9 at rate 0.5 bits/sample. The complexity is based on
implementations without an inordinate number of additions.
The block sizes are powers of two.

(or m multiplications per sample) by computing only the
components that will be coded. For �xed n, m is deter-
mined explicitly by the bit allocation algorithm. One ap-
proximation of m is the number of components allocated
at least one bit in (4). For large n, combining this with

(3) yields m
n
� !�

�
; where !� 2 [0; �) is a solution of

(1 � �)222R = 1 � 2� cos! + �2. Since this approxima-
tion masks the di�erence in energy compaction between the
KLT and the DCT, explicitly computed greedy nonnegative
integer bit allocations were used instead.
For n a power of two, one possible implementation of

the DCT (which does not have an inordinate number of

additions) has 1
2
n log2 n multiplications [3]. To maintain

an analogy with the multiplication count for the KLT, we
should consider pruned computations that determine only
the DCT coe�cients with positive bit allocations. Since the
complexities of pruned DCT algorithms are not easily cap-
tured in a single expression, we use the following estimate:

CDCT = minfm; 1
2
log2 ngmultiplies/sample, (7)

where as above m is the number of coe�cients allocated at
least one bit. This reects the strategy of using a matrix
multiplication when it is more e�cient than a full DCT.

3.1.3. Operational distortion-computation

Having described D(n) and C(n), we have parametric de-
scriptions of the operational D(C) for KLT and DCT cod-
ing. Throughout this subsection, D(n) for optimally loaded
uniform quantization and greedy nonnegative integer bit al-
location are used. Fig. 2 shows operational D(C) curves for
coding at 0.5 bits/sample when computation is estimated
using (5){(6). This graph shows DDCT (C) < DKLT (C) for
all computational budgets C. The graph also shows the dis-
tortion that is obtained when no transform is used, and the
signal is simply subjected to uniform scalar quantization.
This is indicated with an arrow because zero multiplica-
tions is o� the left edge of the plot.
The operational D(C) curves look somewhat di�erent

when the computational complexity is measured using (7)
and the corresponding expression for the KLT. These oper-
ational curves are shown in Fig. 3. For � = 0:9, as before,
the DCT is superior for all computational budgets. On the
other hand, for � = �0:9 the DCT is superior only when
the block size is larger than about 64.



3.1.4. Limitation of the computational model

The calculations made thus far pertain only to operational
D(C) for various implementations of two particular trans-
form methods. The true distortion-computation function
over the class of algorithms that follows a linear transform
with scalar quantization|where complexity is measured by
the number of general multiplications|has a very simple
form. For any block size n, one can approximate the KLT
of the source by a rational matrix. Since multiplication by
rational numbers has no cost, the computational complex-
ity of using this transform is zero. By making n arbitrarily
large and using an arbitrarily good approximation of the
KLT, we �nd that D(C) = d for all C, where d is the
distortion obtained with ideal IIR linear prediction of the
source.
The infeasibility of using the coding strategy described

above highlights the importance of having a good computa-
tional complexity metric. Good metrics would reect actual
costs in some application environment, e.g. execution time
with particular hardware or hardware costs to meet certain
performance speci�cations. Yet at the same time, when
the implementations used are limited to practical schemes
as in Fig. 3, this framework can give a reasonable basis of
comparison between algorithms.

3.2. Coding with �nite precision computations

Regardless of the transform used, transform coe�cients are
coarsely quantized in low rate coding, This is prima facie
evidence that there is no point in computing these coef-
�cients with high accuracy. In this section we analyze the
relative bene�ts of spending computational resources on ac-
curate transform coe�cient calculation and on increased
block lengths.
Consider a KLT-based coding system which uses non-

negative integer bit allocation. As before, denote by m the
number of transform coe�cients that have positive bit allo-
cations. If the i-th transform coe�cient is computed with a
Bi-bit mantissa, a reasonable cost function for a hardware
implementation is

C =

mX
i=1

B
2
i +Bi(1� 1

n
):

This is based on costs of B2 and B for each B-bit multipli-
cation and addition, respectively. Modeling each roundo�
as the addition of uniformly distributed noise and using
the central limit theorem leads to the approximation ŷi =
yi(1+ �i) for each computed transform coe�cient, where yi
is the exact transform coe�cient and �i � N (0; 2�2Bi=3n).
An optimization was performed based on the additional as-
sumption that the quantization error is independent of the
errors from �nite precision computations. The resulting op-
erational D(C) is as shown in Fig. 4.

4. COMMENTS

The computational complexity calculations in Section 3.1.2
used the fact that transform coe�cients that are not allo-
cated any bits need not be calculated. This can be viewed as
a special case of the principle that transform coe�cient cal-
culations need only be accurate enough to determine proper
quantized values.5 Obviously, determining which of a �nite
set of intervals a transform coe�cient lies in can not be
harder than calculating the coe�cient precisely. In DCT-
based image coding, quantized transform coe�cients are

5Here we are assuming computational optimization that does
not e�ect rate-distortion performance. More generally, distortion
incurred due to low precision calculations should be measured
after quantization.
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Figure 4. Operational D(C) for transform coding of an
AR(1) source with correlation coe�cient � = 0:9 in which
the block length and computational precisions of each trans-
form coe�cient are jointly optimized.

often zero, in part because of the use of deadzone quantiz-
ers. Methods to e�ciently identify coe�cients that quan-
tize to zero are currently under investigation. Such coe�-
cients need not be explicitly computed, and a corresponding
pruned DCT algorithm can be used.
In this paper only the encoding operations associated

with transform coding were considered. The scheme sug-
gested in the previous paragraph is the dual of a method
used to optimize decoders; many decoders for DCT-based
image coding enjoy substantial speedups by eliminating the
regular inverse DCT when an all-zero row or column is
detected. The design of such input-dependent algorithms
is generally done in an ad hoc fashion. A notable excep-
tion is work presented in [9], where the following approach
to input-dependent inverse DCT computation is proposed:
classify each input block based on its sparsity structure and
use a pruned DCT algorithm optimized for that sparsity
structure. The classes are designed to minimize the aver-
age computational load over a training set.
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