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ABSTRACT

We consider the use of second order statistics in two-stage

universal source coding. (Examples of two-stage univer-
sal codes include the weighted universal vector quantiza-

tion (WUVQ) [2, 3, 4], weighted universal bit allocation
(WUBA) [5, 4], and weighted universal transform coding

(WUTC) [6, 4] algorithms.) The second order statistics are
incorporated in two-stage universal source codes in a man-

ner analogous to the method by which second order statis-
tics are incorporated in entropy constrained vector quanti-

zation (ECVQ) to yield conditional ECVQ (CECVQ) [1].
In this paper, we describe an optimal two-stage conditional

entropy constrained universal source code along with its
associated optimal design algorithm and a fast (but non-

optimal) variation of the original code. The design tech-
nique and coding algorithm here presented result in a new

family of conditional entropy constrained universal codes
including but not limited to the conditional entropy con-

strained WUVQ (CWUVQ), the conditional entropy con-
strained WUBA (CWUBA), and the conditional entropy

constrained WUTC (CWUTC). The fast variation of the
conditional entropy constrained universal codes allows the

designer to trade o� performance gains against storage and
delay costs. We demonstrate the performance of the pro-

posed codes on a collection of medical brain scans. On the
given data set, the CWUVQ achieves up to 7.5 dB perfor-

mance improvement over variable-rate WUVQ and up to
12 dB performance improvement over ECVQ. On the same

data set, the fast variation of the CWUVQ achieves identi-
cal performance to that achieved by the original code at all

but the lowest rates (less than 0.125 bits per pixel).

1. INTRODUCTION

The universal source coding literature addresses the prob-
lem of code design for applications where the statistics of

the source to be compressed are unavailable at design time.
A universal code is a single code that achieves optimal per-

formance on every source within some broad class of pos-
sible sources. Optimal performance is achieved asymptoti-

cally as the data sequence length and quantizer vector di-

mension grow without bound.
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In [2, 3, 4], Chou, E�ros, and Gray introduce a weighted

universal vector quantizer (WUVQ) and its associated opti-
mal design algorithm. The WUVQ uses a two-stage coding

strategy to achieve universal performance. In the two-stage
approach, each source description contains two sections or

stages. The �rst stage source description speci�es which
code, from some given family of vector quantizers, will be

used to compress the observed source. The second-stage
description is the data sequence encoded using the code

speci�ed in the �rst-stage description.

In order to prove a code universal, one must show that
as the source coding dimension grows without bound the

code's performance approaches the theoretically optimal
performance. Unfortunately, the computational expense of

a vector quantizer grows exponentially in the vector dimen-
sion. Thus while in theory universal codes encode vectors

of in�nite dimension, in practice, \universal" quantizers are
typically implemented with small vector dimensions.

Recent e�orts in practical universal source coding algo-

rithms have concentrated on achieving reasonable complex-
ity codes with high e�ective vector dimensions. One means

of achieving greater performance at reasonable computa-
tional expense is to replace the WUVQ's collection of vector

quantizers with a collection of transform codes that achieve
higher performance for a given computational expense. One

example of a two-stage code of this type is the weighted uni-
versal bit allocation algorithm (WUBA) [5, 4]. WUBA is

a two-stage JPEG-style code which replaces JPEG's single
quantization matrix with an optimal collection of quantiza-

tion matrices. A second example is the weighted universal
transform coding algorithm (WUTC) [6, 4], which uses an

optimal family of transform codes in the two-stage coding
framework. (A transform code contains a transform and an

associated bit allocation.) Both WUBA and WUTC pro-

vide performance improvements over the WUVQ algorithm
due to the ability of each to use higher e�ective vector di-

mensions with reasonable computational expense.

In this paper, we present another means of improving
two-stage coding performance while maintaining reasonable

computational expense. The approach described can be ap-
plied in any two-stage coding framework. For simplicity, we

here demonstrate the algorithm in the WUVQ domain. In
section 2, we brie
y describe the WUVQ algorithm and

the optimal design algorithm for two-stage universal source
codes. In section 3, we describe the conditional entropy con-



strained two-stage universal coding paradigm and its associ-

ated optimal design algorithm and fast variation. Section 4
contains experimental results.

2. THE WUVQ ALGORITHM AND

TWO-STAGE UNIVERSAL SOURCE CODE

DESIGN

Consider any family Cl of l-dimensional source codes (e.g.,
the family of variable-rate vector quantizers, the family of

JPEG-style codes, or the family of transform codes). Each
quantizer C = � � � 2 Cl contains an encoder � : X l ! S
and decoder � : S ! X̂ l, which together map the input
space X l of possible data vectors to the output space X̂ l

of possible reproductions by way of a binary pre�x code S.
For any x

l 2 X l and C 2 Cl, let r(xl; C) = j�(xl)j and
d(xl; C) = d(xl; �(�(xl))) represent the rate and distortion
associated with encoding data vector xl with code C.

Given an input distribution on X l (or a representa-
tive training sequence), for each family of codes Cl, tech-
niques exist for designing a good code C 2 Cl to match
the known input statistics. For example, if Cl is the fam-

ily of l-dimensional vector quantizers, then the generalized
Lloyd algorithm provides a means for designing an optimal

vector quantizer to match a given training sequence. Un-
fortunately, for any family of codes, optimal code design is

data speci�c, and thus traditional compression techniques
fail in applications where the source to be compressed is

unknown at design time or time-varying. The two-stage

approach to source coding addresses this problem.

In two-stage coding, we replace any single code C 2 Cl

with a collection of codes designed to do well across a variety
of possible sources. Using the quantization interpretation

of a two-stage code [3], we consider this collection to be a
codebook of codes. Thus we de�ne a \�rst-stage quantizer"
~� � ~�, with encoder ~� : Xnl ! ~S and decoder ~� : ~S ! C
that together map the input space Xnl of data blocks to the

output space f~�(~s) 2 Cl : ~s 2 ~Sg of possible source codes

by way of the �rst-stage entropy code ~S. The �rst-stage

encoder chooses for each nl-block a single code. We then
use the chosen code to encode each of the n l-vectors in xnl

in the second-stage description.

The total distortion associated with encoding data block

x
nl with code ~�(~�(xnl)) is

d(x
nl
; ~�(~�(x

nl
))) =

nX
i=1

d(x
l
i;
~�(~�(x

nl
))):

The total rate associated with encoding x
nl includes both

the rate associated with describing a code in the collection
and the rate associated with using the chosen code. Thus

r(x
nl
; ~�(~�(x

nl
))) = j~�(x

nl
)j+ r

0
(x

nl
; ~�(~�(x

nl
)));

where j~�(xnl)j is the rate associated with the �rst-stage de-

scription and r
0(xnl; ~�(~�(xnl))) =

Pn

i=1
r(xli; ~�(~�(x

nl))) is

the rate associated with the second-stage description using
code ~�(~�(xnl))).

Then, using a Lagrangian in order to minimize the dis-
tortion subject to a constraint on the rate, the optimal �rst-

stage encoder ~�? for a given collection of codes ~� is

~�
?
= argmin

~s2 ~S

[d(x
nl
; ~�(~s)) + �r(x

nl
; ~�(~s))]

for every x
nl. We call the optimal �rst-stage encoder a

nearest neighbor encoder.

Likewise, the optimal �rst-stage decoder ~�? for a given

�rst-stage encoder ~� satis�es

~�
?
(~s) = arg min

C2Cl
E
�
d(X

nl
; C) + �r(X

nl
; C)

�� ~�(Xnl
) = ~s

�
for every ~s 2 ~S. We call the process of designing the opti-
mal �rst-stage decoder decoding to the centroid. If Cl is the
family of vector quantizers, this step may be accomplished
using the generalized Lloyd algorithm [3, 4]; if Cl is the

family of JPEG-style codes, this step may be accomplished

using an optimal bit-allocation design algorithm [5, 4]; and
if Cl is the family of transform codes, this step may be

accomplished using an optimal transform code design algo-
rithm [6, 4].

The optimal design algorithm is an iterative descent
technique. We initialize the algorithm with an arbitrary

pre�x code ~S and collection f~�(~s) : ~s 2 ~Sg of codes in Cl.
Each iteration requires three steps, enumerated below.

1. Nearest Neighbor Encoding

Optimize the �rst-stage encoder ~� for the given �rst-
stage decoder ~� and pre�x code ~S:

2. Decoding to the Centroid

Optimize the �rst-stage decoder ~� for the new �rst-

stage encoder and the given �rst-stage pre�x code ~S.

3. Optimizing the Pre�x Code

Optimize the �rst-stage pre�x code ~S for the new

�rst-stage encoder and decoder. The optimal pre�x
code ~S? for a given �rst-stage encoder ~� and decoder
~� is the entropy code matched to the probabilities
P [~�(Xnl) = ~s], for which the ideal code-lengths are

j~s
?
j = � logP [~�(X

nl
) = ~s]:

Each step of the algorithm decreases the expected value of

the Lagrangian performance measure. Since the Lagrangian
cannot be negative, the algorithm is guaranteed to converge.

3. CONDITIONAL TWO-STAGE UNIVERSAL

CODES

Conditional two-stage coding addresses the desire for higher
dimensional codes with reasonable computational expense

by incorporating the information in the joint probability
mass function of the two-stage code's codebooks. This in-

formation is incorporated in a manner analogous to that
used to generalize ECVQ to CECVQ [1].

Let fxnl1 ; : : : ; x
nl
Kg be the incoming sequence of data vec-

tors and C1�C2� : : :�CK be a \product codebook of code-
books," with Ci an nl-dimensional two-stage code contain-

ing Mi codebooks. Let P (c1; c2; : : : ; cK) be the probability
that a sequence xKnl is encoded using the second-stage code



ci 2 Ci to encode vector xnli . Then the optimal entropy-

constrained encoding of xKnl is the encoding that minimizes
the Lagrangian

KX
i=1

d(x
nl
i ; ci) + �

"
KX
i=1

r
0
(x

nl
i ; ci) + logP (c1; c2; : : : ; cK)

#
:

If P (c1; c2; : : : ; cK) = �k
i=1P (ci) for all (c1; : : : ; cK), then

KX
i=1

d(x
nl
i ; ci) + �

"
KX
i=1

r
0
(x

nl
i ; ci)� logP (c1; c2; : : : ; cK)

#

=

KX
i=1

�
d(x

nl
i ; ci) + �[r

0
(x

nl
i ; ci)� logP (ci)]

�
and the algorithm described in Section 2 gives the optimal
performance. However, if the distribution on the codebooks

is not memoryless, then incorporation of higher order statis-
tics will yield better coding performance. A tradeo� exists

between the better performance associated with higher or-
der codes and the higher computation and storage require-

ments necessary to apply such a model. We here consider
a simple �rst-order Markov model.

Let

P (c1; c2; : : : ; cK) = P (c1)P (c2jc1) � � �P (cK jcK�1):

Then

KX
i=1

d(x
nl
i ; ci) + �

"
KX
i=1

r
0
(x

nl
i ; ci)� logP (c1; c2; : : : cK)

#

=

KX
i=1

�
d(x

nl
i ; ci) + �

�
r
0
(x

nl
i ; ci)� logP (cijci�1)

��

=

KX
i=1

L(x
nl
i ; cijci�1);

where we de�ne

L(x
nl
i ; cijci�1) = d(x

nl
i ; ci) + �[r

0
(x

nl
i ; ci)� logP (cijci�1)]:

and P (c1jc0) = P (c1) for all c0. The optimal encoder in the

above scenario uses dynamic programming to �nd the op-
timal sequence of codes with which to encode any sequence

of vectors.

For notational simplicity, let Ci = C for all i, where C is a
two-stage code containingM second-stage codes C1; : : : ; CM .
Then for any m 2 f1; : : : ;Mg and any k 2 f1; : : : ;Kg, let
Jk(m) be the optimal Lagrangian performance on the �rst
k nl-vectors xnl1 ; x

nl
2 ; : : : ; x

nl
k using any sequence of codes

c1; c2; : : : ; ck that satis�es ck = Cm. Thus

Jk(m) = min
fci2Cg

k�1

i=1

"
k�1X
i=1

L(x
nl
i ; cijci�1) + L(x

nl
k ; Cmjck�1)

#

and J0(m) = 0 for all m. Then clearly for any 1 � k � K,

Jk(m) = min
m02f1;:::;Mg

[Jk�1(m
0
) + L(x

nl
k ; CmjCm0)]

and the optimal encoder for the entire data sequence achieves

Lagrangian performance

J
�
= min

m2f1;:::;Mg
JK(m):

Now let Ii be the ith codebook index in the optimal encod-
ing of the entire data set xnl1 ; : : : ; x

nl
K . Then

IK = arg min
m2f1;:::;Mg

JK(m);

and the optimal encoding can then be found by backtrack-

ing. That is,

IK�1 = arg min
1�m�M

[JK�1(m) + L(x
nl
K ; CIK jCm)];

IK�2 = arg min
1�m�M

[JK�2(m) + L(x
nl
K�1; CIK�1

jCm)

+L(x
nl
K�1; CIK jCIK�1

)]

= arg min
1�m�M

[JK�2(m) + L(x
nl
K�1; CIK�1

jCm)];

and in general,

Ik = arg min
1�m�M

[Jk(m) + L(x
nl
k+1; CIk+1 jCm)];

where we de�ne L(xnlk ; CIk jCm) = 0 for all k > K.

The optimal design algorithm proceeds as in Section 2
except that the new optimal encoder replaces the earlier

optimal encoder and the optimal entropy code design is
replaced by an optimal conditional entropy code design.

While dynamic programming is computationally e�-

cient, the storage and delay constraints associated with dy-
namic programming can be prohibitive when K equals the

number of nl-dimensional vectors in a large image or data

sequence. We therefore employ a fast version of the condi-
tional two-stage code in this paper, which simply modi�es

K to be as short as necessary to make the storage and de-
lay requirements manageable. We discuss experimentally

observed tradeo�s associated with this faster version in the
following section.

4. EXPERIMENTAL RESULTS

In �gure 1, we compare the performance of the CWUVQ to

the performance of the WUVQ and ECVQ on a collection
of medical brain scans. The constants in the above algo-

rithms are set as: vector dimension l = 4, �rst-stage coding
dimension n = 4, and conditioning memory K = 4096 in

the optimal code (each image is 256 pixels by 256 pixels
in size, giving 4096 nl-dimensional blocks) and K = 4 in

our implementation of the fast version. The ECVQ code-

books contain no more than 256 codewords, while WUVQ
and CWUVQ contain no more than 256 codebooks, each

with at most 4 codewords. Each system is trained on 20
medical brain scans and then tested on 5 scans outside of

the training set. All rates are reported in terms of entropy.
The CWUVQ algorithm achieves up to 7.5 dB performance

improvement over WUVQ, and up to 12 dB performance
improvement over ECVQ. The fast version of the CWUVQ

achieves performance almost identical to that of the opti-
mal code at all but the lowest rates (less than 0.125 bpp).
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Figure 1: Comparison of SQNR results on a collection of
MR brain scans. Codes with CECVQs in the second-stage

(CWUCECVQ, fast CWUCECVQ, and WUCECVQ) are
shown with dashed lines.

The �gure also contains curves describing the performance
of standard and conditional two-stage codes containing col-

lections of CECVQs rather than collections of ECVQs. The
resulting systems, labeled WUCECVQ when the �rst-stage

does not utilize second-order statistics and CWUCECVQ
when it does, yield only extremely marginal performance

improvements over the analogous systems that do not use
second-order statistics in the second-stage codes. This re-

sult can be explained by the small number of codewords
in the second-stage codes. Also contained in the above �g-

ure is the variable dimension WUVQ (VDWUVQ), which
uses a dynamic programming argument in the �rst-stage

encoder to replace the WUVQ's �xed �rst-stage coding di-

mension n with an optimal variable �rst-stage coding di-
mension [7]. While the VDWUVQ gives signi�cant perfor-

mance improvement over WUVQ, especially at low rates,
the VDWUVQ's performance is everywhere exceeded by the

performance of the CWUVQ.
Figure 2 compares the image coding performance of

the above CWUVQ with the image coding performance
achieved using JPEG with two di�erent sets of perceptu-

ally weighted quantization matrices and entropy codes.
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