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ABSTRACT

Amethod to automatically detect targets from sets of pixel-
registered visual, thermal, and range images is outlined. It
uses operations speci�cally designed to work on the di�er-
ent kinds of images to explote the information given by each
of them. Five features are used to distinguish the targets
from the clutter: texture, brightness, temperature, surface
planarity, and height. The results from individual detec-
tors are then combined to improve the detection rate while
reducing the number of false alarms. A morphological op-
eration called \erosion of strength n" is also introduced and
utilized as a powerful tool for removal of spurious informa-
tion. The excellent results obtained for detection support
the suitability of this approach for other ATR (Automatic
Target Recognition) problems.

1. INTRODUCTION

The reason for using several images to detect and recognize
targets is that we can take advantage of the di�erent kinds
of information represented by them in order to raise the
detection and/or recognition rates and to reduce the false
alarm rate. A very good, yet brief, presentation of the dif-
ferent sensors used on ATR is given by Bhanu and Jones
[1]. Work on target detection from multsensor images has
mainly dealt with only two input images [5, 4]. Our ap-
proach here is to de�ne three basically di�erent kinds of
images according to what they represent, without concern
for the speci�c method and/or sensor used to produce them:
Visual Images: Those that represent the intensity of the
light emitted or re
ected by bodies, within the visible band
of the spectrum. A regular photograph is the typical exam-
ple of this kind.
Thermal Images: Those whose pixel values represent a
measure of the temperature at a speci�c location. Actually,
they represent the intensity of light emitted or re
ected by
bodies, but inside a certain infrared region of the spectrum.
Under certain conditions, the intensity obtained from an
infrared [8{12�m] sensor is precisely related to the exact
temperature by a simple line equation [2].
Range Images: Those whose pixel values represent a mea-
sure of the distance from the objects to the sensor. On top-
view aerial images, these images can represent elevation of
terrain or objects.
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Although the selection of a set of images to perform ATR
is non-unique and is certainly not a simple task, we be-
lieve that the three kinds of images mentioned above form
a su�ciently orthogonal basis on which to perform target
detection, based on the inherent di�erences among them.

The methods to produce the images can be very diverse:
The sensors can be active or passive, they may use a given
speci�c band or another. Even for a single kind of image,
several methods could have been employed for its genera-
tion, but the resultant images are of the same nature, and
so, can be operated on by algorithms de�ned for the spe-
ci�c kind of image. In the following section, we describe a
method to perform target detection from sets of three pixel-
registered images (visual-thermal-range) for a given scene.

2. DETECTION ALGORITHM

The general scheme for the detection of targets from visual-
thermal-range image sets is presented in �gure 1. The sys-
tem is designed to operate on top-view images with pixels
represented by bytes (0 to 255). On the visual images,
higher values represent brighter points. On the thermal
images, higher values represent warmer points. The range
images follow a format in which one-level increments corre-
spond to changes of 10 cm in elevation. The images must
be pixel-registered (any point in a scene represented by the
same coordinates in the three images). The resolution for
the images is 25 cm per pixel, and the targets have rectan-
gular to elliptical shapes, with of area 150 to 2000 pixels.

Targets are characterized by a set of features that dis-
criminate them from the clutter: Visual texture and bright-
ness, temperature, surface smoothness, and height. Based
on these features, we develop �ve di�erent target extractors
speci�cally designed to look for regions with these char-
acteristics to perform their operations. Upon cleaning of
spurious information, the detection information from each
of these extractors is combined to obtain the overall de-
tection. With this scheme, targets that are missed from a
given image can be can be detected by the general system,
whereas false alarms produced by individual detectors are
not present in the integrated detector. The implementation
of each of the blocks of �gure 1 is described next.

2.1. Bright/Dark point Extractor

The bright/dark-point extractor is used on both visual im-
ages and thermal images. It extracts points that are either
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Figure 1: The detection algorithm

darker or brighter than their surroundings in visual images,
and points that are either warmer or colder than their sur-
roundings in thermal images. Our method makes use of a
rectangular annular window to discriminate between targets
and clutter. This window, one pixel wide, is placed around
a given test pixel (i; j) (presumably a target) as shown in
�gure 2, and estimates the mean �i;j and standard devia-
tion �i;j of its pixels. Then, to determine the possibility
that the test pixel is part of a target, it checks whether its
value xi;j di�ers from �i;j by more than 1:5�i;j . That is,
if (xi;j � �i;j) > 1:5�i;j or (xi;j � �i;j) < �1:5�i;j ,
then assign point (i; j) as a possible target.

2.2. Texture Extractor

The texture extractor operates on visual images. It mea-
sures the degree of similarity between adjacent pixels, for
both the point under study (i; j) (presumably a target) and
the pixels on an annular window around it (presumably
clutter), and then compares them to see if they di�er by
more than a speci�ed amount. As in the bright/dark-point
extractor, we calculate a mean and a standard deviation for
the annular window, but of the absolute di�erence between
adjacent pixels, rather than of their intensity. Also, we cal-
culate x�i;j , the average di�erence in value between point
(i; j) and its four adjacent points. So the test to determine
a target point becomes:
if (x�i;j � ��i;j) > 1:5��i;j or (x�i;j � ��i;j) < �1:5��i;j ,
then assign point (i; j) as a possible target.

�


�
	Target

Clutter

Test Pixel��
���1 Rectangular

Annular
Window

HHY

Figure 2: Annular Window for Target Detection

2.3. Planar Region Extractor

Since targets are well modeled by a collection of planar
regions, the use of the degree of planarity to determine pos-
sible targets has been proposed [4]. A target usually has
smooth (planar for small regions) surfaces, compared to
most forms of clutter (grass, trees, ground). The planar
region extractor examines 3�3 pixel regions from the range
images, and obtains an error e with respect to the equation
of a plane, z = ax+ by + �0. The error is estimated using
the equation

e = jjXw� zjj2, where
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The elements of of xi include the x and y coordinates for
each of the 9 points under study. Similarly, z represent the
heights for those pixels derived from the range values. w is
a 3-element vector representing the best �t (with minimum
square error) of the 9 points to a plane;

w = (XtX)�1Xtz

The extractor uses a threshold eTH = 0:6; a pixel is de�ned
as a target if e < eTH .

2.4. Prede�ned Elevation Extractor

If we have a basic knowledge of the kind of targets to search
for (in our case, tanks), we can easily check if a point under
study has an elevation suggesting a possible target. For
this, we calculate �i;j , the average elevation of a surface in
an annular window around a point (i; j), and then compare
it with xi;j , the elevation of the point (i; j):
if 80cm < (xi;j � �i;j) < 250cm ,
then assign point (i; j) as a possible target.



Table 1: Detection results; (
p
) detected, (�) miss.

Scene 1 Scene 2 Scene 3 SRC parameters

Image Extractor t1 t2 FA's t1 t2 t3 FA's t1 t2 t3 FA's n1 n2

Visual Texture
p

� 9
p p p

28
p

� � 16 3 5
Visual Bright/Dark

p
� 9

p
� � 13

p
� � 8 5 8

Thermal Bright/Dark
p p

13
p p p

13
p p p

21 5 8

Range Pr. Elevation
p p

6
p p p

10
p p

� 17 4 7
Range Planarity

p p
24

p
�

p
21

p p
� 12 4 5

Overall Detection Results
p p

4
p p p

5
p p

� 7 - - - - - - - - - -

2.5. Spurious Region Cleaner (S.R.C)

The output of each of the extractors de�ned above is a bi-
nary image (1: target, 0: no target), downsampled by 4:1
(after or during the extraction operation) to reduce com-
plexity while maintaining most of the detection information.
A problem with those images is that they present many
isolated single-pixel blobs, or some blobs that de�nitely do
not have the shape of a target. Also, there are some blubs
that can be recognized by eye as targets, but which have
many \holes" (pixels with value 0) in them. To remove this
\noise," we use a series of morphological operations that are
speci�cally designed for this purpose. We propose an ero-
sion operator eros-n(im,n), \erosion of strength n" which
works as follows: a 3�3 template is passed over the binary
image im. Around each pixel (i; j), the number of 1's is
counted. If it is larger than n, the output for the pixel (i; j)
is 1, otherwise, it is 0. This operator can be used in series,
with di�erent values of n, and gives excellent results. This
powerful but simple operator can be stated with MATLAB
code as follows:

b=[1 1 1; 1 1 1; 1 1 1];
imOUT=conv2(imIN, b, 'same');
imOUT= (imOUT >= n );

When n = 9, it degenerates into the classical 3� 3 erosion
operator. By using n < 9, we keep points on the input im-
age that are important, but that would be eliminated with
other erosion methods. Note also that the operator is in-
dependent of shape. An analogous \dilation of strength n"
can also be de�ned. The spurious region cleaning (SRC)
operator is de�ned as follows:

imout = dilate(eros-n(eros-n(imin; n1); n2)
The application of two erosion operators in series results
in great performance on eliminating spurious target pixels,
for di�erent densities and target-to-clutter contrasts. The
parameters n1 and n2 are toned to speci�cally work on the
di�erent images. The dilate operator is used to join together
points that are likely to belong to the same target. The out-
put gives small regions inside the likely targets, usually with
very few false alarms, for the di�erent binary images.

2.6. Majority Decision

The �nal function of the detector is to combine the results
of the individual detectors to produce the �nal output. The
method we use checks the �ve detectors, and for each pixel
it assigns a 1 if there are three or more 1s as inputs, and
assigns a 0 otherwise. If a cluster of 1s overlaps a target,
the target is declared detected, otherwise it is declared a

miss. A cluster not overlapping a target is declared a false
alarm (FA).

3. TEST DATA AND RESULTS

We analyzed three di�erent sets of images (each consisting
of a visual, a thermal, and a range image), representing
three scenes. The �rst scene has two tanks, on a dry area,
without vegetation. The second scene has three tanks, in-
cluding one partially occluded by vegetation. The third
scene has also three tanks including one partially occluded
by vegetation, and it has several pieces of cultural clutter,
such as small buildings, bridges, etc. The last two scenes
have bodies of water as well. The images, 512�512 pixels,
are arti�cial, but were synthesized with information from
real visual images. 1

The generation process was as follows: Visual back-
grounds were taken from selected aerial photographs. These
images were clipped and scaled to match our objectives.
Then, we embedded visual images of tanks on the images,
with the use of interactive programs. The location and ori-
entation of the targets were chosen to resemble a real scene
as closely as possible. Then thermal images were �rst gener-
ated with the use of interactive tools to de�ne temperature
values for every part of the images, and then post-processed
with the use of �ltering, interpolation, and the addition of
spatially correlated random data. Finally, the range im-
ages were synthesized in a similar way, incorporating not
only the elevation data, but the random height variability
of the di�erent surfaces that composed the scene, as would
result from subpixel information.

As seen in table 1, some targets could not be detected
from individual images, but most were correctly detected by
our integrated system. Of the total of eight targets, seven
were correctly detected, and only 16 false alarms were pro-
duced, almost half of them from cultural clutter in the third
scene. The number of false alarms per scene was smaller
than the number of false alarms obtained for any individual
detector. The only miss corresponds to a partially occluded
target. A series of images with the complete detection re-
sults for scene 2 is shown in �gure 3; t1, t2 and t3 are in
the left, bottom left, and bottom right respectevely, t2 is
partially occluded by foliage. Note how the di�erent values
(n1, n2) used for the double SRC operator make it possible
to remove spurious information from very di�erent concen-
trations and distributions of possible target pixels. We plan

1Thermal Images have been modi�ed to avoid the over-ease
of detection presented in [6].
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Figure 3: Detection process for scene 2. (a-c) Original visual, thermal, and range images. (d-h) show the detection before
SRC (left) and after SRC (right), as they result from: (d) texture extractor on visual image, (e) bright/dark extractor on
visual image, (f) bright/dark extractor on thermal image, (g) prede�ned elevation extractor on range image, (h) planar
region extractor on range image. (i) overall detection results.

to apply our system to additional real scenes when data be-
comes available, to see its actual performance and to adjust
the parameters correspondingly. We think that the pro-
cess of classi�cation can be greatly improved by the use of
this scheme. Once the targets are detected, direct template
matching for the di�erent images can be easily applied.
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