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ABSTRACT

Robustness as well as the ability to work in an un-
supervised mode are two desirable features of algorithms
employed on large image databases. This paper describes
parameter optimization strategies for such algorithms and
motivates these strategies by focussing on aerial image ex-
ploitation and studying certain speci�c aerial image un-
derstanding algorithms, namely local vehicle detection and
global vehicle con�guration detection. The paper �rst gives
a brief introduction to the problem in the context of aerial
imagery. Next, a high level description of the algorithms
and parameters that need to be optimized is given. Strate-
gies for parameter optimization are illustrated using exam-
ples. Finally a discussion on the applicability and scope for
improvement of the strategies is given.

1. INTRODUCTION

Context based aerial image understanding (AIU) has been
studied quite extensively recently, the approach often re-
ferred to as `site model based image exploitation' e.g., [1],
[3]. Such an approach is very well suited for routine AIU
work such as detection and counting of vehicles and global
vehicle con�gurations, because it enables discrimination be-
tween irrelevant changes (e.g. illumination change, seasonal
variations etc.) and actual changes. The approach consists
of maintaining an abstraction of a site, referred to as the
site-model. The site-model consists of a coordinate system
and various features which are models of the objects that
the site consists of (e.g. parking lots, roads, buildings etc.).
A typical AIU task would be to detect changes in a newly
acquired image of the site. Note that the new image could
have been taken with a di�erent illumination level or in
a di�erent season from the earlier images. Prior to do-
ing any processing on the image, it is necessary to register

[9] the image with the site, which means calculating the
image's transformation with respect to the site origin. In
other words, registration provides a mapping from features
in the site, which are image independent, to the image in
question. This enables running the detection algorithms on
selected portions of the image, for example, parking lots or
certain areas of interest. The detection algorithms, how-
ever, depend upon several parameters as input. The opti-
mal choice of these parameters can be very image depen-

The support of the Advanced Research Projects Agency
(ARPA order No. 8979 ), the U. S. Army Topographic Engineer-
ing Center under contract DACA 76-92-C-0024 is acknowledged.

dent and clearly, for reasonably accurate results one cannot
use the same parameters for every image. Optimal choice
of these parameters appears to need extensive input from
the image analyst on a per-image basis. This presents an
obvious problem as regards the application of these algo-
rithms in batch (i.e. unsupervised) modes over large image
databases. In this paper, we address various issues involved
in solving the above problem. We consider limiting or com-
pletely eliminating, the number of tuning parameters using
the following strategy: preliminary sensitivity analysis is
used to identify those parameters which the results of the
algorithm are most sensitive to. A compound measure of
sensitivity is chosen as the expected risk function, computed
empirically over a set of training images. The parameters
which the algorithm is the least sensitive to, are \frozen"
to their best values (o�-line parameter optimization). We
provide `on-line' training tools for the remaining parame-
ters which the performance depends the most on. For such
on-line training tools, we introduce the concept of control
patches that are �xed portions of a given site and are used
for automatic parameter tuning. The concept is explained
in more detail in Section 4. The approaches used for param-
eter training and optimization are set in a classic hypothe-
sis testing framework using Bayesian and Neyman-Pearson
strategies. A related issue is the assessment of the sensitiv-
ity of the algorithms to non-image dependent parameters,
for example, to any model or template parameters. This
problem is important for site-model based exploitation and
some initial results are reported here.

2. OUTLINE OF ALGORITHMS

Vehicle Detection and Counting

The aim of this module [4] is to reliably detect and count
vehicles in aerial images. The vehicle detection process con-
sists of two stages, namely, an edge detection stage and a
testing stage. The edge detection stage uses the Canny
edge operator [2]. This stage involves speci�cation of two
thresholds, referred to as the high and low thresholds, and
a mask size for convolving the image with the Canny opera-
tor. The testing phase operates on the edge data generated
from the edge detection phase. A generalized Hough trans-
form of the image is calculated using the known shape and
size (user speci�ed) of the sample vehicle provided, and a
vote for possible centers of vehicles is thus calculated for
each pixel in the image. A hypothesis is made for a vehicle
at each such candidate center, and the edge map is exam-



ined. The quality of the match between the edge map and
the candidate vehicle outline is judged using a threshold
referred to as the overlap threshold. If the degree of over-
lap exceeds the threshold, a vehicle is declared. Thus, the
overall vehicle detection process involves the speci�cation
of four parameters - the Canny mask size, low threshold,

high threshold, overlap threshold, and the model vehicle.
Con�guration Detection

The purpose of this module [4] is to detect vehicle for-
mations in images. The con�guration detection process
uses spectral analysis, wherein spectral compliance windows
are inferred from model information to search for impul-
sive components representing periodic object con�gurations
such as convoys on roads or vehicles in parking lots. We
have designed a detection rule on the observation space O
which consists of the absolute spectrum magnitude associ-
ated with the impulsive component and its value relative to
the median spectrum magnitude. The rule tests the dom-
inant spectral component within a compliance window at
the base and corresponding harmonic frequencies and takes
into account the normalized spectrum magnitude Ka asso-
ciated with the maximum peak at f� within a compliance
window and the ratio of the spectrum magnitude to the
median Kmed of this magnitude computed over the compli-
ance window, denoted by Kr. Thus, the parameters to be
optimized are Ka, and Kr.

3. DETECTION AND TRAINING

On-line parameter training and o�-line parameter optimiza-
tion are set in a hypothesis testing framework. Let H0 and
H1 correspond to the two hypotheses (absent/present),

Hi : P (Yji) = Pi(Y)

The acceptance and rejection regions are designed over some
observation space O. The observation vector Y in the case
of the vehicle detector is simply the overlap value. In the
case of the con�guration detector, it is composed of the two
spectral measures described in Section 2.

A decision rule d is simply given by d(Y) = IR(Y),
with IR the indicator function on the acceptance region R.
The acceptance region admits a parametric form

R = RV = fY such that b(Y;V) � 0g

where the form of the critical/acceptance regions can be
inferred from the distributions satis�ed by the observation
vector under either hypothesis. The design of the detection
rule is set up according to the following two strategies:

� (A) Bayesian strategy: Find V� = argmin(EfR(d)g).
This strategy consists of minimizing the expected risk
[8] where the cost factors Cfa and Cnd are chosen to
balance the cost associated with a false alarm and a
non-detection:

EfR(d)g = CndP0(RV)�0 +CfaP1(RV

c)�1

where P0(R) and P1(RV

c) are the false alarm and
non-detection probabilities, and �i are the priors.

� (B) Neyman-Pearson: Find V
� = argmax(P1(R))

subject to P0(R) < �.

4. VEHICLE DETECTOR OPTIMIZATION

The relative impact of the parameters involved was studied
by carrying out experiments on images with known ground
truths. Speci�cally, the empirical expected risk EfR(d)g in-
cluding both false alarm and non-detection rates were com-
puted for the Canny mask size, the Canny thresholds and
the overlap thresholds. The results for the Canny mask
size and the overlap thresholds are shown in �gures 1 and
2 respectively. From this empirical risk it was inferred
that the variation in detection performance was smaller for
the Canny parameters when they varied within their op-
erational limits, while the performance varied signi�cantly
with the overlap threshold. Thus, for the former parameters
it would be su�cient to derive optimal estimates (o�-line
optimization), while for the latter, we need to consider a
training tool (on-line optimization).

For o�-line Canny parameter optimization we use the
strategy (A) with the expected risk computed over the train-
ing set. We choose Cnd = 0:5 and Cfa = 0:5 and we assume
equal priors, which is equivalent to a minimum probability
error rule. The empirical value ofEfR(d)g is computed over
the range of Canny parameters as a function of the Canny
threshold and mask sizes. The Canny parameters are set
o�-line to the values minimizing the expected risk. These
values were found to be 5 for the mask size and (200; 400)
for the minimum and maximum thresholds. For the on-line
overlap threshold training, we use strategy (B). Empirical
detection and false alarm probability are derived from pre-
determined control patches. For each newly acquired im-
age, the overlap threshold is automatically computed from
the empirical probabilities derived from the control patches.
Denote by P1(RV) = r(P1(RV

c)) the empirical ROC curve
derived by varying the overlap threshold V; then we want
to �nd V� satisfying V� = argmax(P1(RV)) subject to

� P0(RV) < �

�
d(r(p))

dp
jp=P1(RV

c)> �

The second condition ensures that the slope of the ROC
curve for the given value of V is not too small, i.e. that an
increase in false alarm probability can be traded for a signif-
icant increase in detection probability. One issue remains,
as to the selection of control patches.

When a new image is acquired, the overlap threshold
is automatically \calibrated" using control patches as ex-
plained above. In site model based image exploitation of
aerial imagery, control patches with their associated ground
truth can be speci�ed once by representing them as speci�c
features of the site (in terms of position, orientation etc.).
This way, whenever a new aerial image of the site needs
to be subjected to any of the above algorithms, the con-
trol patches will be mapped to portions of image, as part
of the registration process (where the image is registered
with the site model). The above is possible when we can
identify control patches in the parking lot that are known
to be always empty (such as passageways, parking lot exits,
etc.), or always full (areas located near building entrances).
If such patches cannot be reliably identi�ed, an interactive
method could be used, where the image analyst inspects
and validates the control patches over a subset of the im-
ages to be processed before initiating a batch procedure.



5. CONVOY DETECTOR OPTIMIZATION

In the case of the convoy detector, the components of Y,
the 2D observation vector, are the logarithms of the pa-
rameters Ka and Kr that were described in section 2, i.e.
Y = (ln(Ka); ln(Kr)) = (La; Lr). Let H0 and H1 corre-
spond to the two hypotheses, with H0 the hypothesis that
no peak is present; the decision rule is simply d(La; Lr) =
IRV (La; Lr). We use a Bayesian strategy (A) for deriving
the acceptance region from a training set of images. The
acceptance region boundary is parameterized by vector V
and chosen as

R = R
V
= f(La; Lr); such that b(La; Lr;V) � 0g

Assuming that the joint conditional probability distribu-
tions on Y = (La; Lr) are Gaussian, i.e. Hi : P (Yji) �
N(mi;�i); i = 0; 1; then the log-likelihood ratio function
is a quadratic function in Y[5], i.e. (Y � m1)

t��1
1
(Y �

m1) � (Y �m0)
t��1

0
(Y �m0). We assume dissimilar co-

variances for which the boundary equation b(:; :; ) = 0 is
a conic section. The acceptance region is determined by
�nding V�, which minimizes the expected value of the con-
ditional risk computed over the training set, i.e. V

� =
argmin(EfRV (d)g). As an example, ten images from a par-
ticular site were chosen as a training set, and b(:; :; ) was as-
sumed to be an elliptic boundary. The parameters of this el-
liptic boundary were optimized on the set of control images.
The expected value EfR(d)g, computed over the training
set, is a noisy function of V, in part due to the modest size
of the training set. V* is determined by using the Nelder-
Mead Simplex algorithm [7]. This function is non-convex,
and therefore the simplex algorithm is not guaranteed to
converge. Furthermore, the minimum is not unique. The
resulting boundary for Cnd = 0:55 and Cfa = 0:45 is shown
in Fig. 3. In this example, the compound detection per-
formance yields a false alarm probability equal to 0:115385
with a non-detection probability equal to 0:085714.

6. MODEL PARAMETER MISSPECIFICATION

We also characterized the sensitivity of parking lot occu-
pancy detection to misspeci�cation of the model parame-
ters. The 3D dimensions of the vehicle were varied, and
the detection and false alarm probabilities were computed
on the set of test images. The resulting probabilities are
displayed as functions of these dimensions in Figure 4 for
detection of active parking lots. In Figure 4, the upper sur-
face represents the probability of detection as a function of
the 3D width W and length L. The lower surface represents
the false alarm probability. Situations where the width is
greater than the length constitute a misspeci�cation by �=2
of the actual vehicle orientation. In this �gure we see that
the resulting performance is not too sensitive to reasonable
variations in size.

7. CONCLUSION

We addressed the problem of automatic tuning of param-
eters for image understanding algorithms with speci�c ref-
erence to local vehicle detection and global vehicle con�g-
uration detection algorithms in AIU tasks. We proposed

two di�erent approaches for optimization, depending upon
the relative impact of the parameters on the performance of
the detection algorithms, the relative impact being inferred
from runs on a set of test images. Naturally, it should be
ensured that the test images are large in number so as to
be statistically comprehensive. This would further justify
freezing parameters of lesser signi�cance to their o�-line op-
timal values. Also, in the present schemes, the sensitivity
to tuning and model parameters is evaluated empirically.
This study can be complemented by a more in-depth ana-
lytical study of these algorithms' sensitivity, as is done in
[6] where each step of the algorithm can be described ana-
lytically and a �rst order sensitivity analysis can be carried
out. In the present study, empirical distributions are used.
Instead, the moments can be estimated and simple hypoth-
esis testing techniques can be used to verify the consistency
of the observed data with the assumed distribution and es-
timated moments. Also, on line parameter optimization
techniques have been introduced by use of the concept of
`control patches' which is very useful and practicable in the
context of site-model based image exploitation and merits
further investigation for parallels in other applications.
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Figure 1: Vehicle detection: expected risk as a function of
Canny mask size.
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Figure 2: Vehicle detection: Expected risk as a function of
overlap threshold.
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Figure 3: Decision region obtained from training images.
Active parking lots are indicated by `o's and inactive by
`+'s in the (Lr; La) plane.

L
W

D
et

ec
tio

n 
an

d 
Fa

ls
e 

A
la

rm
 P

ro
ba

bi
lit

ie
s

<-- Detection Probability

<-- False Alarm Probability

18
20

22
24

26

10

12

14

16

18

0

0.2

0.4

0.6

0.8

1

Figure 4: Sensitivity of the detection of active parking lots
to misspeci�cation of vehicle dimensions.


