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ABSTRACT

Deformable models have been intensively investigated dur-

ing the last decade. Several well known algorithms, pro-
posed in other contexts can also be included in this class
(e.g., Kohonen maps, elastic nets and fuzzy c-means). In
all these methods the model parameters are obtained in a
deterministic framework by the minimization of an energy
function. This paper proposes a novel class of probabilis-
tic shape models related to the unified framework presented
in [1]. Shape modelling is addressed as a MAP estimation
problem, by assuming that the image features are random
variables with Gibbs-Boltzmann distribution, and provides
extensions for several well known algorithms. The main
difference between the proposed algorithms and the origi-
nal ones lies on the partition function which depends on the
model parameters and influences the shape estimates. For
example, it is shown that in snakes the partition function
generates short-range repulsive forces between the model
units which prevent their collapse when they are attracted
by common data.

1. INTRODUCTION

Deformable models have been intensively investigated as a
set of adaptive tools for shape representation and tracking.
Inspired in physics, these models have the ability to dynam-
ically modify their shape to fit the object boundary. Some
well known examples are: Snakes [2], Balloons [3], B-snakes
[4] and eigen shape models [5]. We have recently proposed
in [1] a unified framework for the study of deformable mod-
els, based on a common energy function, which includes
several well known algorithms (e.g., snakes, elastic nets [6],
Kohonen maps [7], fuzzy c-means [8] and hard c-means [9])
and allows a joint study of these methods. As an alternative
to the physic interpretation, shape estimation can be formu-
lated as a statistical inference problem. Previous attempts
to link these two perspectives are described in [10][11] which
discuss elastic nets and probabilistic snakes as Bayesian es-
timation methods.

This paper addresses shape modeling in a Bayesian con-
text, assuming that image features are random variables
with shape dependent probability distribution. The esti-
mation of the unknown parameters is addressed as a MAP
estimation problem. Two basic questions concern the choice
of the probability models and its relationship with previous
algorithms. Inspired in statistical mechanics we assume that

the 2D features detected in the image (e.g., edge points) have
a Gibbs-Boltzmann distribution p(Plv) = e PP /7 (y)
where E is the energy function proposed in [1], P is the
set of observed features and v is a vector with the un-
known (shape) parameters. Z is a normalization term de-
noted as partition function. By an appropriate choice of
the weighting functions we may obtain the probability dis-
tribution for snakes, elastic nets, Kohonen map or fuzzy
c-means [1]. Since the partition function depends on the
unknown parameters, the MAP estimate obtained from the
Gibbs-Boltzmann distribution is, in general, different from
the shape estimate which minimizes the energy E used in
classic active contour algorithms. The difference lies on the
structure of the partition function. Therefore, the partition
functions of several data representation algorithms are also
discussed in the paper.

2. CONSTRAINED CLUSTERING

It was proposed in [1] a unified framework for a class of
constrained clustering algorithms based on the minimiza-
tion of a fuzzy energy function. This framework includes
several data representation methods, (e.g., snakes, Koho-
nen maps, elastic nets, c-means and fuzzy c-means), derived
in the context of neural networks, constrained clustering
and deformable models. The usefulness of this approach is
twofold. It allows a unified understanding of different algo-
rithms and it provides design tools for the development of
new techniques by an appropriate choice of a set of weight-
ing functions. The unified framework is briefly summarized
in this section (details can be found in [1]).

Let P be a set of M edge points detected in the image
and let v = [vy,---,un]T, vx € R?, be a sequence of model
units (v will be denoted as shape model in this paper). We
wish to estimate v, in order to minimize an energy function

E=E, +Eq (1)

containing a regularization term F, = %tT{UTAU}, which
measures the smoothness of the contour, and a data repre-
sentation term

Eq = Z Zwk(P)HUk - p|)? (2)

pEP k=1

where wi(p),k = 1,---, N, is a set of weighting functions
which depend on the squared Euclidean distances d; = ||p—
v;||* from pattern p to all the model units (see figure 1).
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Figure 1. Weighting functions. (p - edge point;
Vk—1, Uk, Vk+1 model units)

The minimization of (1) is often performed by a gradient
algorithm

it = Ut—l—oz(Fr—l—Fd) (3)
where F, = =% = —Avand Fa = —[§74, -, §74]" with
(1] o

d — -

o = D kp)(vk = p) (4)

peEP

Function 9x(p) is derived from the weighting functions
wi(p), -+, wn(p) and measures the influence of pattern p
on the k-th model unit. The rows of matrices Fy and F;
are usually interpreted as data and regularization forces ap-
plied to each model unit. The data forces pull the model
units towards the image patterns while regularization forces
try to keep the contour shape smooth. Since all data points
attract the model units, each unit is attracted towards the
centroid of the data points near the unit (see [1] for details).

To define a deformable model belonging to this class, the
user must specify a regularization matrix A and the set of
weighting functions wx(p). By an appropriate choice of these
functions, the algorithm becomes equivalent to snakes, Ko-
honen map, elastic net, hard or fuzzy c-means. Expressions
for the weighting functions are given in [1].

3. MAP SHAPE MODELS

This section addresses shape estimation in a Bayesian
framework. This requires two probabilistic models: a shape
model (prior) and a data model (observation model). These
models can either be estimated from a set of known images
or chosen by the user, using the available knowledge on the
shape properties and the image formation process. The sec-
ond approach is adopted in this section. The shape and
observation models used in this paper are based on the reg-
ularization and data energies defined in section 2.

Let the object shape, v, be a random variable with known
probability density function p(v) = Ce~™®% and let the
image features be M independent random variables with
Gibbs-Boltzmann distribution

e—PEa(v)

p(Plv) = 70 (5)

where

Z(v) = /2M e PBalv) (6)

is the partition function (the notation stresses that Z de-
pends on the model shape). The maximum a posteriori es-
timate of the model shape given a set of observed features,
P is [12]

& = arg max log p(P|v) + log p(v) (7)

Therefore,
0 = arg max —(8Ey, + BEa(P;v) +log Z(v))  (8)
i.e., the estimated shape minimizes an equivalent energy
E = BFE +log Z(v) 9)

The MAP algorithm defined in (5-8) is not equivalent to
the minimization of E described in section 2 due to log Z(v)
term which depends on the model shape v. Using (2,6), the
log partition function can be written as follows

N
logZ(v) = Mlog/ H e_ﬁwk(p)llvk_pll2dp (10)
R? oy

Equations (5-9) define a class of probabilistic shape models
based on the fuzzy data energy (2). These models will be
denoted as MAP Shape models and extend previous works.
Durbin et al. proposed in [10] a probabilistic interpretation
of the elastic net algorithm when 8 = 1. In this case, the
partition function is shape independent and the MAP esti-
mate also minimizes E). Gibbsian models are also used in
probabilistic snakes described in [11]. However, the parti-
tion function is assumed to be constant (shape independent).
This assumption is approximately valid if the model units
are well separated but it is wrong if the distance between
two or more units becomes smaller than 30. The partition
function influences the shape estimates obtained from (8).
This influence is addressed in sections 4 and 5.

4. TWO-UNIT MODELS

The difference between the energy functions minimized
in constrained clustering and in the MAP methods is

logZ(v). In general, this term depends on all the shape
units vy, - -+, vy and it is not easy to evaluate it analytically
from (10), except in special cases (e.g. elastic nets with
Bg=1).

To understand the role of the log partition function we
shall first consider models with two units: vy, v2. In this case
log Z is a function of vi — v2 and can be numerically com-
puted. Figure 2 shows log Z in MAP snakes, elastic nets,
Kohonen maps and fuzzy c-means, considering a model with
two units. Different behaviors are observed. In snakes (Fig.
2a), the log partition function increases when the distance
between the units becomes small, achieving a maximum at
v1 —v2 = 0. The gradient of logZ generates repulsive forces
which pull the units apart. This can be interpreted as short
range forces between units, similar to the Lennard-Jones
interaction described by Szeliski et al. [13] , inspired in
inter-molecular dynamics. A deep valley is observed in the
MAP Kohonen map (see Fig. 2b). In this case attrac-
tive forces are applied to the model units. Finally fuzzy
c-means exhibit a hybrid behavior (short range attraction
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Figure 2. Log partition function of a pair of units
in: a) snakes; b) elastic nets (8 = 1); ¢) Kohonen
maps (zero neighborhood radius); d) fuzzy c-means

forces, medium range repulsive forces) and elastic nets have
a null force field if 8 = 1.

The force fields associated with these four algorithms are
shown in Figure 3. During the optimization by the gradient
algorithm, this force field is added to the data forces and
regularization forces described in section 2 and influences
the shape estimates. For example, the repulsive forces gen-
erated in snakes prevent the model units from collapsing.
This can be seen in the next example.

Figure 4 illustrates the forces applied to a pair of units in
the classic and MAP snake algorithm. In MAP snakes, two
kinds of forces are displayed: the attraction forces towards
the image features (gradient of the energy function) and the
repulsive forces due to the partition function. In the deter-
ministic algorithm, only the first type of forces is present.
This shows the role of the partition function in keeping the
model units apart, preventing their collapse.

5. MULTI-UNIT MODELS

It is harder to characterize the influence of the log parti-
tion function in multi-unit models. If the model units are
well separated except a finite number of pairs, the previous
analysis is valid and the log partition forces applied to each
of the close units are identical to the ones computed in the
previous section. If the number of close units in a group is
larger than two, other interactions have to be considered.

In MAP snakes, it is possible to derive an analytical ex-
pression for the log partition forces, expressed as a sum of
interactions between pairs, triples, ...,n-tuples of close units
(this will be presented in detail in [14]).

Figure 3. Force field of log partition function for a
pair of units in: a) snakes; b) elastic nets; ¢) Koho-
nen maps; d) fuzzy c-means

To provide some insight about the influence of the log-
partition function in real images preliminary tests were car-
ried out to assess the performance of the deterministic and
MAP snake algorithm. The edge patterns used in these tests
were computed using the Sobel algorithm and the shape
model was initialized outside the object and far from the
object boundary. The optimization of the energy function
was performed by the gradient algorithm.

(a) (b)

Figure 4. Forces applied to a pair of units: a) MAP
and b) classic snakes; Black dots represent image
features and white dots are the model units.

Figure 5 shows a comparison between snakes and MAP
snakes. Figure 5a contains the original image and the initial
model configuration (40 units were used in this example).
Figures 5b,c show the edges detected by the Sobel algorithm
in the upper left region of the knife image and the potential
function in this region, obtained by convolving the edge im-
age with a Gaussian lowpass filter [3]. Finally, Figures 5d,e
show a detail of the shape estimates obtained by snakes and
MAP snakes. The influence of the log partition function is
clear since it avoids the concentration (collapse) of model
units in the deep potential valleys (no redistribution of the
model units was performed in these examples).



%

Figure 5. Object boundary extraction. a) initial
model configuration; b) edge points; c¢) potential
field; final configurations using d) Classic Snakes
and ¢) MAP Snakes

6. CONCLUSION

This paper presented a class of MAP shape models based
on the constrained clustering framework described in [1].
Shape is estimated by a MAP method, assuming a Gibb-
sian observation model with a fuzzy energy function. The
fuzzy energy is defined by a set of weighting functions which
control the algorithm behavior. The new class of algorithms,
presented in the paper, provides probabilistic extensions for
a set of well known techniques (snakes, elastic nets, Koho-
nen maps, c-means and and fuzzy c-means), allowing a joint
characterization of these methods.

The MAP estimates derived from the Gibbs-Boltzmann
distribution are not equivalent to the minimization of the
energy F used in deterministic algorithms. An additional
term (the log partition function) is added to the cost func-
tion. The influence of this term is discussed in the paper.
First, simple models with two units are considered. It is con-

cluded that the log partition function generates additional
short range interaction forces between close units. These
forces can be repulsive as in MAP snakes, attractive as in
MAP Kohonen maps or hybrid as in MAP fuzzy c-means
and resemble the Lennard-Jones interaction used by Szeliski
et al. [13] , inspired in inter-molecular dynamics.

The role of the log partition function in larger models is
also discussed. Short range forces are generated if two or
more units become close. The amplitude of these forces de-
pends on the choice of the weighting functions and on the
geometry of the cluster. Experimental results are provided
to assess the effect of these forces in MAP snakes with real
images. It is concluded that they improve the shape es-
timates by avoiding the concentration or even collapse of
model units in deep potential valleys.

The log partition function used in this paper was com-
puted by numerical integration in R? using (2). This is a
time consuming operation which is repeated in each itera-
tion of the optimization process. To overcome this difficulty,
an analytic expression of the log partition function for the
MAP snake algorithm is presented in a forthcoming paper
[14].
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