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ABSTRACT

Edge detection is a fundamental issue in image analysis.

Due to the presence of speckle, which can be modelled as

a strong multiplicative noise, edge detection in Synthetic

Aperture Radar (SAR) images is very di�cult and meth-

ods developed for optical images are ine�cient. We here

propose a new edge detector for SAR images which is opti-

mum in the MSSE sense for a stochastic multiedge model.

It computes a normalized Ratio Of Exponentially Weighted

Averages (ROEWA) on opposite sides of the central pixel.

This is done in the horizontal and vertical direction, and the

magnitude of the two components yields an edge strength

map. Thresholding of the edge strenght map and postpro-

cessing to eliminate false edges are brie
y discussed. We

present results on simulated SAR images and ERS1 data.

1. INTRODUCTION

We shall start from a general image processing viewpoint

and incorporate the speci�c properties of SAR images as

we go along. In optical images without texture, an edge

pixel is usually de�ned as a local maximum of the gradient

magnitude in the direction of the gradient, or equivalently,

as a zero-crossing of the second derivative in the gradient

direction. Prior to the derivation, smoothing is necessary,

as di�erential operators are sensitive to noise.

For simplicity, we restrict ourselves to separable �lters.

Let f be a one-dimensional smoothing �lter and g its �rst

derivative. The horizontal and the vertical component of

the gradient of the smoothed image are given by:

�x[(f(x)f(y))
 I(x; y)] = g(x) � (f(y) ? I(x; y)) (1)

�y[(f(x)f(y))
 I(x; y)] = g(y) ? (f(x) � I(x; y)) (2)

Here, 
 denotes bidimensional convolution, � denotes con-

volution in the horizontal direction and ? denotes convolu-

tion in the vertical direction. Basically, each component of

the gradient corresponds to the di�erence of the local mean

values computed on opposite sides of the central pixel.

The signal to noise ratio is very low in SAR images, typ-

ically 0 dB for one-look images. To su�ciently reduce the

in
uence of the speckle, the smoothing window must con-

tain an important number of pixels. Unfortunately, large

windows tend to blur the edges and subsequently reduce

the edge localisation precision. The �lter should be de-

signed to optimize the compromise between noise suppres-

sion and spatial resolution. The multiplicative nature of

speckle must be taken into account explicitely.

2. MULTIEDGE MODEL

As the sliding window on which the smoothing is performed

is large, it is likely to contain several edges. The frequently

used mono-stepedge model is therefore inappropriate. A

statistical multiedge model is more realistic. We suppose

that the re
ectivity (ideal image) R is a stationary random

process composed by piecewise constant segments with ran-

dom magnitudes frig, with mean value �r and standard de-

viation �r. The localization of the re
ectivity jumps fxig

follows a Poisson distribution with parameter � correspond-

ing to the mean jump frequency. The local re
ectivities

frig and the jump localizations fxig are supposed to be

independent. Hence �R = �r and �R = �r.

Figure 1. The one-dimensional multiedge model.

It can easily be shown that the autocovariance function

of the re
ectivity is:

CRR(�x) = �
2

Re
��j�xj

(3)

The power spectral density, which we here de�ne as the

Fourier transform of the autocovariance function, is then:

SRR(!) =
2��2R
�2 + !2

(4)

3. MULTIPLICATIVE NOISE MODEL

Speckle is due to the constructive and destructive inter-

ference between the responses of the di�erent elementary

scatterers in a resolution cell. It is well modelled as a mul-

tiplicative random noise n in intensity images [1]:

I(x) = R(x) � n(x) (5)



The transfer function of the SAR system is designed to

vary as little as possible over the bandwidth of interest. It

changes the spectrum of the ideal image very little, but lim-

its the bandwidth of the noise spectrum. This e�ect is here

incorporated in the term n. Speckle is gamma distributed

with �n = 1 and �
2
n = 1=L, where L is the equivalent num-

ber of looks [1]. The autocorrelation of the speckle decreases

very rapidly. As an approximation, n will be considered as

white noise in what follows:

Cnn(�x) = �
2

n�(�x) (6)

Snn(!) = �
2

n (7)

4. LINEAR MMSE FILTER

The best unbiased linear estimator of the re
ectivity has

the form [2, 3]:

R̂(x) = �R(x) + f(x) � (I(x)� �I) (8)

Minimizing the mean square error yields the optimum trans-

fer function [3]:

F (!) =
�nSRR(!)

SRR(!) � Snn(!) + �2RSnn(!) + �2nSRR(!)
(9)

By substituting into eq. (9) and taking the inverse Fourier

transform we obtain the optimum impulse response:

f(x) = Ce
��jxj

; (10)

where

�
2
=

2L�

1 + (�R=�R)2
+ �

2
(11)

and C is a constant. The unknown parameters can be es-

timated from the measured intensity image or a speckle

reduced image obtained by adaptive �ltering [4].

We normalize f with respect to the mean value, ie

C = �=2, to obtain a non-biased estimate. With this nor-

malization eq. (8) simpli�es to

R̂(x) = f(x) � I(x): (12)

The �lter f is known as the In�nite Symmetric Exponential

Filter (ISEF) [5]. Its �rst derivative is given by:

g(x) =
d

dx
f(x) =

�
K � e

��x if x > 0

�K � e
�x if x < 0

(13)

where K is a constant. The �lters f and g, together with

eq. (1) and (2), de�ne the edge detector of Shen and Cas-

tan [5], which is an optimum multiedge detector for im-

ages degraded by additive white noise. It is claimed to give

better edge localization precision than other edge detectors

proposed for images with additive noise. The �lter f(x)

and its �rst derivative g(x) are shown in �g. 2. In the dis-

crete case, they can both be implemented very e�ciently

by a pair of �rst order In�nite Impulse Response (IIR) �l-

ters, f1(n) and f2(n), realizing the normalized causal and

anti-causal part of f(n), respectively [4, 5, 6].

Figure 2. The ISEF �lter and its �rst derivative

5. EDGE DETECTION

Owing to the multiplicative nature of speckle, edge detec-

tors based on the di�erence of local mean values detect

more false edges in areas of high re
ectivity than in areas

of low re
ectivity. Several monoedge detectors with Con-

stant False Alarm Rate (CFAR) have been developed for

SAR images, eg based on a normalized Ratio Of Averages

(ROA) [7] or a Likelihood Ratio (LR) [8]. Oliver et al re-

cently showed that the LR detector for gamma distributed

speckle coincides with the ROA operator when only the av-

erages are calculated on equal sized halves of the analyzing

window [8].

To obtain a spatially optimum multiedge detector with

CFAR, we can take the normalized ratio rather than the

di�erence of the outputs of the �lters f1 and f2 in the dif-

ferentiation step, cf eq. (1) and (2) and �g. 2. To com-

pute the horizontal edge strength component, the image is

�rst smoothed column by column using the one-dimensional

smoothing �lter f , Next, the �lters f1 and f2 are employed

independently line by line on the result of the smoothing

operation, and the ratio of their outputs is calculated for

each pixel. The ratio is normalized to be superior to one by

taking the maximum of the computed ratio and its inverse.

The vertical edge strength component is obtained in the

same manner, except that the directions are interchanged.

The magnitude of the components gives the edge strength.

The segmentation is obtained from the edge strength map

by a modi�ed version of the watershed algorithm [9], which

is a simple and e�cient edge detection method which yields

closed, skeleton boundaries running through local maxima

of the edge strength map. The modi�cation consists in in-

troducing a detection threshold [4, 10]. Only edge strengths

over the chosen threshold are considered. Local maxima

with lower magnitudes are supposed to be due to noise.

For the modi�ed watershed algorithm to form meaningful

boundaries, the edge detection threshold must be set rela-

tively low. Consequently, numerous false edges will also be

detected.

6. POSTPROCESSING

False edges can be eliminated by merging regions whose

mean values are not signi�cantly di�erent. The LR for re-



gion merging is simply the inverse of the LR for edge de-

tection [4, 8]. Geometrical considerations can also be taken

into account, based on a priori knowledge about the size

and shape of the regions. The order in which the regions

are merged is very important. A computionally e�cient and

locally optimum approach is the iterative pairwise mutually

best merge criterion [11].

7. EXPERIMENTAL RESULTS

The novelty of the ROEWA operator compared to other

CFAR detectors is that it relies on exponentially weighted

means rather than arithmetic means. To study the in
uence

of this weighting we compare it with the ROA detector.

Let us �rst consider a \cartoon image" composed of ver-

tical lines of linearly increasing width shown in �g. 3. The

ratio between the re
ectivities of the bright and the dark

lines is 4. Its 1-look speckled counterpart was simulated

with approximate ERS1 caracteristics. With e
�� = 0:9

for the ROEWA operator and window size 37 � 37 for the

ROA operator we have the same equivalent number of inde-

pendent pixels [4] in each half window, and thus the same

speckle supression capacity for both operators. The edges

were detected by the modi�ed watershed algorithm with

threshold 1:6. As all real edges are vertical, the number

of horizontal edges gives a visual appreciation of the false

alarm rate. We see that it is approximately the same for

both operators. The ROEWA operator gives a systematic

detection of edges for a line width of 7 or higher, whereas

the the ROA operator detects systematically only from line

width 12. The experiment indicates that the ROEWA op-

erator has better spatial resolution than the ROA operator

for a given speckle reduction capacity.

The operators were also tested on a multitemporal se-

ries of 3-look ERS1 images of an agricultural scene near

Bourges, France. Visual inspection revealed small di�er-

ences, the ROEWA operator giving only slightly better re-

sults than the ROA operator. The best results were ob-

tained with e
�� = 0:73 and window size 13 � 13, respec-

tively, for which the two operators had the same speckle re-

duction capacity. We allowed a massive over-segmentation

in the edge detection step, and then eliminated false edges

by merging regions according to the LR criterion. Regions

containing only one pixel were supposed to be due to speckle

and merged without further testing. The result for the

ROEWA operator is shown in �g. 4.

8. CONCLUSION

In this paper, we propose an optimum multiedge detector

for radar images, the ROEWA operator. It was tested on

simulated SAR images, where it detected edges on �ner

scales than the ROA operator. Rather than estimating

arithmetic averages on �nite size windows, as other CFAR

detectors do, the ROEWA operator computes exponen-

tially weighted local mean values over in�nite size windows.

Thanks to the exponentially decaying weighting function,

this can be done without the loss of localization preci-

sion which usually limits the use of large windows. Com-

bined with watershed thresholding and region growing, the

ROEWA operator yields thematic segmentations which can

be exploited in speckle reduction [12] and classi�cation [13].

Figure 3. Ideal image consisting of vertical lines of

width 2 to 18 (top), simulated 1-look SAR image,

segmentation obtained with the ROA edge detector,

and segmentation obtained with the ROEWA edge

detector (bottom).



Figure 4. SAR image of an agricultural scene near

Bourges, France, c
ESA - ERS1 data - 1993 - Distri-

bution SPOT IMAGE, and segmentation obtained

by the ROEWA operator, watershed thresholding

and LR region merging. The CD-ROM version

shows a colour composition of three dates.
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