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ABSTRACT

This communication presents a non-supervised seg-

mentation method based upon a discrete-level unilat-

eral Markov �eld model of the image. Such models

have been shown to yield numerically e�cient algo-

rithms, for segmentation and for hyperparameter esti-

mation as well. Our contribution lies in the derivation

of a parsimonious telegraphic parameterization of the

unilateral Markov �eld. On a theoretical level, this pa-

rameterization ensures that some important properties

of the �eld (e.g., stationarity) do hold. On a practi-

cal level, it reduces the computational complexity of

the algorithm used in the segmentation and parameter

estimation stages of the precedure. In addition, it de-

creases the number of hyperparameters that must be

estimated, thereby improving convergence speed and

accuracy of the corresponding estimation method.

1. INTRODUCTION

This communication deals with segmentation of images

modeled as Markov random �elds (MRFs). MRFs have

proved useful in image segmentation because they can

explicitly model important features of actual images,

such as the presence of homogeneous regions separated

by sharp discontinuities. However, the corresponding

methods are often computationally intensive and solv-

ing the unsupervised problem, i.e., estimation of the

MRF parameters, generally presents great di�culties.

In order to overcome such di�culties, Devijver and

Dekesel [1] proposed an unsupervised segmentation ap-

proach in which the image model belongs to a spe-

cial class of unilateral MRFs: Pickard random �elds

(PRFs). Such models result in a signi�cant reduction

of the computational burden, particularly in the seg-

mentation stage. However, several di�culties remain:

on a theoretical level, tractable expressions of para-

metric constraints have yet to be established for n-ary

PRFs; in the estimation stage, theoretical properties of

PRFs such as stationarity are not enforced; on a more

practical level, convergence of the estimation procedure

is somewhat questionable and often slow.

In this communication, we propose an extension of

Devijver and Dekesel's technique based upon a par-

simonious telegraph parameterization of PRFs which

guarantees that desirable theoretical properties of

PRFs are ful�lled. Formulas for model parameter esti-

mation as well as for image segmentation are derived.

The parsimonious character of the parameterization re-

sults in a signi�cant reduction of the amount of compu-

tations and in a better robustness of the estimation pro-

cedure. Consequently, the proposed method presents

better characteristics from both theoretical and practi-

cal standpoints.

2. APPROACH

Our approach is akin to that presented in [1]. The im-

age to be segmented is modeled as a n-ary PRF X.

Such models are stationary and their joint probabil-

ity is determined by a measure � on a four-pixel ele-

mentary cell
�
A
C

B
D

�
that must ful�ll several symmetry

and independence conditions [2]. As a consequence,

the marginal probability of each row and column of

X presents the structure of a stationary and reversible

Markov chain whose initial and transition probabilities

can easily be deduced from � .

It is assumed that the observed image Y is a noise-

corrupted version of a n-ary PRF X, and that the con-

ditional probability distribution of pixel Y j
i is given by

p(Y jX) =
Y
i;j

p(Y
j
i jX

j
i ) ; (1)

p(Y
j
i jX

j
i = k) = fk ; (2)



where i; j and k respectively denote the row, column

and state indices of the current pixel. Segmentation

is performed using a marginal maximum a posteriori

approach which consists of maximizing marginal like-

lihood p(X
j
i jY ) for each pixel X

j
i . The key to the

derivation of a numerically e�cient algorithm lies in

the following approximation:

p(X
j
i jY ) � p(X

j
i jY i;Y

j
) ; (3)

where Y i and Y
j respectively denote the i-th row and

j-th column of Y . Applying the Baye's rule and using

the orthogonality properties of measure � immediately

yield

p(X
j
i jY i;Y

j
) / p(Y ijX

j
i )p(Y

j jXj
i )p(X

j
i ): (4)

Taking advantage of the Markov chain structure of Xi

andXj , the �rst two terms of the right hand side of (4)

can be evaluated in an e�cient manner by means of

forward-backward algorithms [1]. It should be stressed

that the type of parameterization of Markov chainsXi

and Xj has a signi�cant impact on the computational

cost of the forward-backward procedures.

The estimation stage, i.e., the determination of pa-

rameter vector � which controls the probability dis-

tributions fk and the Markov chain measures, is car-

ried out using a maximum likelihood (ML) approach.

The maximum of likelihood function p(Y j�) cannot

be expressed in closed form. However, because of the

Markov chain structure of the rows and columns of

X, an expectation-maximization (EM) approach is well

suited to iterative maximization of the likelihood func-

tion [3]. Starting from an initial value �̂0, the EM al-

gorithm generates a series of estimates �̂k by iterating

the following two steps:

E : Evaluate Q(�; �̂k;Y ) ; (5)

M : �̂
k+1

= argmax
�

Q(�; �̂
k
;Y ) ; (6)

with

Q(�;�
0

;Y )
4

= E[J(X ;Y ; �)jY ; �
0

] ; (7)

J(X ;Y ; �)
4

= ln p(Y jX ; �) + ln p(X; �) : (8)

The procedure can be shown to increase the likelihood

until a critical point of the likelihood function is

reached. It should be underlined that, in [1], the distri-

butions of Xi and X
j are parameterized in a standard

manner by the initial and transition probabilities. Con-

sequently, stationarity and reversibility of each row and

column is not guaranteed, and measure � generally does

not ful�ll the Pickard conditions. In addition, O(n2)

parameters must be estimated, which signi�cantly in-

creases the computational burden and induces conver-

gence di�culties when the number of states increases

(see Section 4).

In order to alleviate these theoretical and practical

di�culties, we propose a telegraph model (TM) for the

rows and columns of X, and we derive the correspond-

ing reestimation formulas.

3. TELEGRAPH MODEL AND

REESTIMATION FORMULAS

The TM adopted here is a straightforward generaliza-

tion of a class of of Markov chains proposed in [4] for

segmentation of seismic signals. The initial probability

vector p and transition probability matrix P of each

row and column is parameterized with two vectors �

and � such that

P = �+ (1� �)�T ; p =

�
I ��+ ��T

�
�1

� ;

(9)

with �
4

= vect(�k), �
4

= diag(�k), 1 = (1; : : : ; 1)T

and I = identity matrix. It can be veri�ed that ma-

trix diag(p)P is symmetric, and that the conditions for

p and P to be a valid probability vector and a valid

probability transition matrix are given by

8k; �k � 0 ;

nX
k=1

�k = 1 ; 8k; �
�k

1� �k
� �k � 1 :

(10)

Therefore, as long as the initial state probability vector

is equal to p and that constraints (10) are ful�lled, (9)

de�nes a stationary and reversible Markov chain that

we choose to parameterize with � = f�;�g.
The segmentation stage is carried out in the same

way as in [1]. The interest of the TM lies in a sim-

pli�cation of the forward-backward algorithm used to

evaluate the approximate marginal likelihood values

p(X
j
i jY i;Y

j
). Each recursion of the algorithm requires

the computation of conditional probabilities of the form

p(X
j
i jX

j
i�1) or p(X

j
i jX

j�1
i ), which directly depend on

P . Expressing P as a function of vectors � and � al-

lows us to bring the computational complexity down

from O(n2) to O(2n).

Maximization of the exact likelihood p(Y j�) does

not yield any tractable expression of the estimates of

the model parameters. Following Devijver and Deke-

sel [1], we approximate the exact likelihood by the

pseudo-likelihood ~p(Y j�) de�ned by:

~p(Y j�)
4

=
Y
i

p(Y ij�)
Y
j

p(Y
j j�):



Then, an EM algorithm for iterative maximization of

~p can be derived. The major di�culty lies in the M

step which, according to (5)-(8), consist of maximizing

quantity Q de�ned by

Q(�;�0)
4

=
X
X(�)

ln p(X(�);Y (�); �) p(X(�) j Y (�); �
0) ;

whereX(�) and Y (�) respectively denote any row or col-

umn of X and Y . Under our assumptions, maximiza-

tion of Q yields two independent optimization prob-

lems. The �rst one applies to the parameters of ffkg
and as long as weak orthodoxy conditions hold, one ac-

tually obtains the classical Baum-Welch reestimation

formulas [5]. The second one applies to TM parameters

� whose new value � is obtained through maximization

of Q(�;�0) =
P
X(�)

ln p(X(�); �) p(X(�) j Y (�); �
0). Us-

ing the de�nition of a TM, Q can be expressed as

Q(�;�0) /

nX
k=1

�
�k ln�k + �k ln(1� �k)

+sk ln
�k + �k � �k�k

�k � �k�k

�
� ln

 
nX

k=1

�k

1� �k

!
;
(11)

where the general form of quantities �k, �k and sk is

given by:

�k
4

=

JX
j=1

p(X
j

(�)
= kjY (�); �

0) ; (12)

�k
4

=

J�1X
j=2

p(X
j

(�)
= kjY (�); �

0) ; (13)

sk
4

=

JX
j=2

p(X
j�1

(�)
= k;X

j

(�)
= kjY (�); �

0) : (14)

These quantities can be evaluated with the same for-

ward-backward algorithm as the one used in the seg-

mentation stage. Maximization of Q with respect to

� and � under constraints (10) does not yield any

tractable expression. However, the last term of the

right-hand-side of (11) becomes small with respect to

the �rst term as the size of the rows or columns in-

creases. Neglecting thIS last term and maintaining the

expression of Q invariant by index-reversion allows us

to make the approximation

Q(�;�0) � ~Q(�;�0) =

nX
k=1

Qk ;

with

Qk = �k ln�k(1� �k) + sk ln

�
1 +

�k

�k(1� �k)

�
;

(15)

where �k
4

= (�k + �k)=2. Maximization of ~Q(�;�0)

under equality constraint
Pn

k=1 �k = 1 involves several

stages. We �rst notice that, for a given value of �, the

optimal value of � is obtained through independent

maximization of each Qk. This yields

�k =
sk=�k � �k

1� �k
; (16)

and � necessarily ful�lls the third constraint of (10).

Substituting (16) into (15) allows us to express Qk as

a function of �k to within an additive constant factor:

Qk = k ln
�k

1� �k
; with k

4

= �k � sk � 0 :

(17)

The Lagrange multiplier technique is used for maxi-

mization of ~Q with respect to � under constraints (10).

Equating the gradient of the corresponding criterion to

zero yields:

8k 2 [1; n]; ��k
2 � ��k + k = 0 ; (18)

where � denotes the Lagrange multiplier. When � >

4k, the above equation has two distinct roots located

on either side of 1=2 and respectively denoted by �+k (�)

and �
�

k (�). Thus, 2n combinations should be com-

pared. However, in order for (10) to be ful�lled, �(�)

may only contain one �+k (�). This brings the number

of possible combinations down to n+ 1. Furthermore,

detailed investigation of the properties of combinations

that include one �+k (�) reveals that
~Q is maximized by

the combination that contains �+
k
(�) where state k is

de�ned by

k
4

= argmax
k

k : (19)

Only two possible combinations remain: the one made

up of all ��k (�) and the one containing �
+

k
(�). Fur-

ther analysis of their properties shows that one and

only one combination ful�lls constraints (10) and that

it can be selected according to a very simple inequality

criterion [6]. Finally, the value of the Lagrange mul-

tiplier must be determined. It cannot be expressed in

closed form, but tight lower and upper bounds can be

easily derived. Classical numerical interpolation tech-

niques can then be employed so as to ful�ll constraintPn

k=1 �k = 1 with arbitrary precision.
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(b)
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Figure 1: Example of result obtained with a X-ray to-

mography image. The goal was to segment the inner

part of the left and right ventricles. In spite of the

low contrast of the observed image (a), the proposed

method provides satisfactory results (b) whereas the

technique described in [1] (c) diverges.

In the resulting unsupervised segmentation proce-

dure, the �rst consists of estimating the model param-

eters using the above EM algorithm. By construction,

the model is consistent with the Pickard properties

of measure � . Then, in a second stage, the image is

segmented using the parameter values estimated pre-

viously. Both stages make use of the same forward-

backward algorithm, whose computational complexity

is reduced because of the parsimony of the TM param-

eterization.

4. RESULTS

The proposed method was tested with simulated and

real images, under the assumption that the noise dis-

tribution (probabilities fk) is Gaussian. With simu-

lated data, we observed a satisfactory behavior of the

method, with fast convergence and accurate results of

the estimation procedure. With real data, occasional

divergence of the estimation procedure was observed.

This may be interpreted as a consequence of a degener-

ate likelihood function which may occur when the mean

and variance of a probability distribution are jointly

estimated [7]. Here, the problem was overcome by pre-

estimating the mean values mk using local averages on

Y . In this manner, results were satisfactory ant he

method was able to segment small structures, as illus-

trated in Figure 1

Comparison with the procedure described in [1] con-

�rms that the method proposed here presents a smaller

computational complexity and a faster and more robust

convergence. It therefore appears as an interesting al-

ternative to existing unsupervised segmentation meth-

ods.
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