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ABSTRACT

This work deals with unsupervised sonar image segmenta-

tion. We present a new estimation segmentation procedure

using the recent iterative method of estimation called Itera-

tive Conditional Estimation (ICE). This method takes into

account the variety of the laws in the distribution mixture

of a sonar image and the estimation of the parameters of the

label �eld (modeled by a Markov Random Field (MRF)).

For the estimation step we use a maximum likelihood esti-

mation for the noise model parameters and the least square

method proposed by Derin et al. to estimate the MRF

prior model. Then, in order to obtain a good segmentation

and to speed up the convergence rate, we use a multigrid

strategy with the previously estimated parameters. This

technique has been sucessfully applied to real sonar images

and is compatible with an automatic treatment of massive

amounts of data.

1. INTRODUCTION

Due to its high-resolution performance a high frequency

sonar allows to visualize all kind of objects located on the

sea-bottom. Their detection and then their classi�cation

(as wrecks, rocks, man-made objects, and so on...) are

based on the extraction and identi�cation of their associ-

ated projected shadows in sonar picture. Before any neu-

ronal classi�cation step, the processing chain has previously

to segment the sonar image between shadow area and sea-

bottom reverberation area. Nevertheless, segmenting an im-

age into di�erent classes without a priori information is

not an easy task in computer vision. The main di�culty is

that the parameter estimation is required for the segmen-

tation, while the segmentation is needed for the parameter

estimation. For example a Markovian segmentation [1] [2]

gives good results; nevertheless a large number of estimated

parameters is required in order to solve the problem of un-

supervised segmentation of image sonar.

To circumvent this di�culty, a scheme was proposed in [3]

in which the estimation and the segmentation are imple-

mented recursively. This method is interesting but requires

a very complicated computation. An alternate approach to

solve the unsupervised MRF segmentation problem con-

sists in having a two steps process. First a parameter esti-

mation step in which we have to estimate the noise model
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parameter and the MRF model parameters. Then a sec-

ond step in which we applied the segmentation algorithm

with the estimated parameters.

First let us consider the estimation of the noise model pa-

rameters. Several techniques were proposed previously to

determine aMaximum Likelihood estimate of the noise model

parameters from a given image. EM (Expectation Maxi-

mization) or SEM algorithms (Stochastic ExpectationMax-

imization) can be used in the case of Gaussian distribution

mixtures [4] [5] or for a speci�c application to sonar im-

agery where we take into account the variety of laws in the

distribution mixture [6]. Nevertheless, these algorithms do

not take into account the properties of the label �eld de-

�ned in a MRF segmentation as a Gibbs distribution. As

we will show in this paper, another way to estimate these

parameters consits in using the ICE procedure.

Let us consider now the estimation of the MRF model pa-

rameters. The MRF model provides a powerful tool for

incorporating the knowledge about the spatial dependence

of each label of the segmented image. The knowledge about

the scene is incorporated into an energy function that con-

sists of apropriate clique functions. In most of the previous

work usingMRFmodels, the parameters of the prior model

are assumed to be known and determined in an ad hoc fash-

ion. Howewer the values of these parameters determine the

distribution over the con�guration space to which the sys-

tem converges. Besides, in our application, it is di�cult to

�nd appropriate parameters values of the clique functions

since the real scenes are di�erent for each picture (sea 
oor

with pebbles, dunes, ridges, sand, : : :). Thus estimating

these parameters is very crucial in practice for successful

labelling.

In this paper, we adopt for the Estimation Step the gen-

eral and recent ICE procedure to estimate simultaneously

the MRF prior model (with the Least Square estimator

LSQR described by Derin et al) and the noise model pa-

rameters (with a Maximum Likelihood estimator). For the

Segmentation Step, we use a multigrid segmentation with

the previously estimated parameters. This paper is orga-

nized as follows : In section 2 and 3, we de�ne the notation

and we give a brief description of the ICE procedure and

the used estimators. Section 4 and 5 detail the Estimation

Step and the initialization of the procedure. The experi-

mental results on real scenes are presented in section 6.



2. ITERATIVE CONDITIONAL ESTIMATION

We consider a couple of random �elds Z = (X;Y ), with
Y = fYs; s 2 Sg the �eld of observations located on a lattice

S of N sites s and X = fXs; s 2 Sg the associated labelling.

Each of the Ys takes its value in �obs = f0; : : : ; 255g and

each Xs in fe0 = shadow; e1 = sea bottom reverberationg.
The distribution of (X;Y ) is de�ned by, �rstly, PX(x), the
distribution of X which is supposed stationary and Marko-

vian and, secondly, the distributions �sPYs=Xs
(ys=xs). In

this work these distributions vary with the class.

In the unsupervised segmentation case, we have to es-

timate in a �rst step (Estimation Step), parameter vec-

tors �x and �y which de�ne PX(x) and PY=X(y=x) respec-
tively. We estimate them using the iterative method of

estimation called Iterated Conditional Estimation (ICE)

[7]. This method requires to �nd two estimators, namely

�̂x = �x(X) and �̂y = �y(X;Y ) for completely observed

data. When X is unobservable, the iterative ICE procedure

de�nes �
[k+1]
x and �

[k+1]
y as conditional expectations of �̂x

and �̂y given Y = y computed according to the current val-

ues �
[k]
x and �

[k]
y . These are the best approximations of �x

and �y in terms of the mean square error. By denoting Ek ,

the conditional expectation using �
[k]

= [�
[k]
x ;�

[k]
y ]. This

iterative procedure is de�ned as follows :

� One takes an initial value �[0] = [�
[0]
x ;�

[0]
y ].

� �[k+1] is computed from �[k] and Y = y by :

�
[k+1]
x = Ek [�̂xjY = y] (1)

�
[k+1]
y = Ek [�̂yjY = y] (2)

The computation of these expectations is impossible in prac-

tice, but we can approach (1) and (2), thanks to the law of

large numbers by :

�
[k+1]
x =

1

n
� [�x(x(1)) + � � �+�x(x(n))] (3)

�
[k+1]
y =

1

n
� [�y(x(1); y) + � � �+ �y(x(n); y)] (4)

Where x(i); i = 1; : : : ; n are independent realizations of X

according to the distribution PX=Y;�[k](x=y;�
[k]). Finally,

we can use the ICE procedure for our application because

we get :

� An estimator �y(X;Y ) of the complete data : we use

a Maximum Likelihood (ML) estimator for the noise

model parameter estimation. In order to estimate

�̂x = �x(X), given a realization x of X, we use the

LSQR estimator [8] described by Derin et al. which

will be exposed (see subsection 3.2).

� An initial value �[0] not too far from the real param-

eter (see section 4).

� Away of simulating realizations ofX according to the

posterior distribution PX=Y (x=y) by using the Gibbs

sampler [9].

The ICE procedure is not limited by the form of the con-

ditional distribution of the noise. This algorithm is well

adapted for our application where the speckle distribution

in the sonar images is not exactly known and varies accord-

ing experimental conditions.

3. ESTIMATION OF PARAMETERS

3.1. Noise Model Parameters

The Gaussian law, N (�; �2) is an appropriate degradation

model to describe the luminance y within shadow regions

(essentially due to the electronical noise). The more natural

choice of the estimator �̂y = �y(x = e0; y) is the empirical

mean � and variance �2 :

�̂ML =
1

N
�

NX
i=1

yi (5)

�̂
2
ML =

1

N � 1
�

NX
i=1

(yi � �̂ML)
2

(6)

In order to take into account the speckle noise phenomenon

[10], we model the conditional density function of the sea

bottom class by a shifted Rayleigh law R(min;�2
) [6]. The

maximum value of the log-likelihood function is used to

determine a Maximum Likelihood estimator of the complete

data. If ŷmin is the minimum grey level within the sea

bottom region, we obtain the following results :

�̂
2
ML =

1

2N
�

NX
i=1

(yi �dminML)
2

(7)

dminML � ŷmin � 1 (8)

3.2. A Priori Model Parameters

A MRF prior model is speci�ed in terms of certain pa-

rameters, called the clique parameters. These parameters

correspond to the clique potential values of an equivalent

Gibbs Random Field representation. Several schemes have

been proposed in the computer vision literature for the es-

timation of the MRF parameters. Most of them (coding

method, maximum pseudo likelihood method [1] : : :) are

iterative and have to solve a set of nonlinear equations.

The MRF parameter estimation method described in

this section has been proposed by Derin et al. This scheme

is not iterative and parameters estimated are close to the

true parameters [8]. We brie
y describe this estimator in

terms of our model, i.e. the eight nearest neighborhood

system. Let �s represent the set of labels assigned to the

neighbors of site s and �x= [�1; �2; �3; �4] be the a priori

parameter vector (clique potentials) (see Fig. (1)). We

de�ne :
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Figure 1: Eight neighborhood and associated cliques

�
t
(xs; �s) = [I(xs; u1) + I(xs; u3);I(xs; u2)+

I(xs; u4);I(xs; v1) + I(xs; v3);I(xs; v2) + I(xs; v4)]

Where I(z1; z2) =

�
0 if z1 = z2,

1 otherwise.



The local energy function U can be expressed as :

U(xs; �s;�x) =�
t
(xs; �s) ��x (9)

The local conditional probability at site s can be written :

PXs=X�s
(xs=�s) =

PXs;�s(xs; �s)

PX�s
(�s)

= Z
�1
s � exp

�U(xs;�s ;�x)

Where Zs is the local partition function and P (e1; �s) is the
joint distribution of the label e1 with the neighborhood �s.

We obtain the following expression for two di�erent values

of xs ( xs = e0 and xs = e1) with identical neighborhood

�i :

exp[�U(e1; �i;�x) + U(e0; �i;�x)] =
PXs;X�s

(e1; �i)

PXs;X�s
(e0; �i)

Taking logarithms on both sides and substituting for U from

(9), we have :

[�(e0; �i) ��(e1; �i)]
t ��x = ln

�
PXs;X�s

(e1; �i)

PXs;X�s
(e0; �i)

�
(10)

�x is the unknown parameter vector to be estimated and

the ratio of the right hand side of (10) may be estimated

using simple histogramming (by counting the number of

3� 3 blocks of type (e1; �i) and dividing by the number of

blocks of type (e0; �i) over the image). By substituing each

value of �i with (10), we obtain 256 equations (28 possi-

ble neighborhood con�gurations) in four unknowns. This

overdetermined linear system of equations is solved with

the least square method.

4. INITIALIZATION

The initial parameter values have a signi�cant impact on

the rapidity of the convergence of the ICE procedure and

on the quality of the �nal estimates. In our application, we

use the following method :

The initial parameter of the noise model �
[0]
y are de-

termined by applying a 6 � 6 non overlapping sliding win-

dow over the image and calculating the sample mean, vari-

ance and minimum grey level estimates. Each estimation

calculated over the sliding window gives a sample xi (in

fact a three dimension vector). These (unlabelled) samples

fx1; : : : ;xMg are then clustered into two classes using the

K-means clustering procedure in the following way :

1. Choose K initial cluster centres c
[1]

1 ; : : : ; c
[1]

K .

These could be arbitrary, but are usually de�ned by:

c
[1]

i = xi 1 � i � K

2. At the k th step, assign the sample xl, 1 � l � M to

cluster j if

k xl � c
[k]

j k<k xl � c
[k]

i k

for all i 6= j. In our application, the measure of simi-

larity between two samples is the Euclidean distance.

3. Let C
[k]

j denote the j th cluster after Step 2. Deter-

mine new cluster centres by :

c
[k+1]

j =
1

Nj

�
X
x2C

[k]

j

x

Where Nj = number of samples in C
[k]

j . Thus, the

new cluster centre is the mean of the samples in the

old cluster.

4. Repeat until convergence is achieved (c
[k+1]

j = c
[k]

j 8j)

In our application K = 2. ML estimation are then used

over the K-means segmentation to �nd �
[0]
y . The initial

parameters of the Gibbs distribution are obtained by using

the LSQR method from the ML segmentation x̂[0].

�
[0]
x = �LSQR(x̂

[0]
) with

x̂
[0]
s = arg max

xs

P
Ys=Xs;�

[0]
y

(ys=xs;�
[0]
y ) (8s 2 S)

5. PARAMETERS ESTIMATION PROCEDURE

We can use the following algorithm to solve the unsuper-

vised sonar image segmentation problem. Remind us that

this method takes into account the diversity of the laws in

the distribution mixture estimation as well as the problem

of the estimation of the label �eld parameters.

� Initialization : K-mean algorithm (see section 4).

Let us denote �[0] = [�
[0]
x ;�

[0]
y ] the obtained result.

� ICE procedure :

�[k+1] is computed from �[k] in the following way :

� Using the Gibbs sampler, n realizations x(1); : : : ;
x(n) are simulated according to the posterior distri-

bution with parameter vector �[k], with :

PYs=Xs
(ys=xs = e0) a Gaussian law (shadow aera)

PYs=Xs
(ys=xs = e1) a Rayleigh law (sea bottom aera)

� For each x(i) (i = 1; : : : ; n), the parameter vector

�x is estimated by the Derin et al. algorithm and �y

with the ML estimator of each class.

� �[k+1] is obtained from (�x(x(i));�y(x(i); y))
1 � i � n by (3) and (4).

If the sequence �[k] becomes steady, the ICE procedure

is ended and one proceeds to the segmentation using the

estimated parameters.

6. SEGMENTATION ON REAL PICTURES

The energy function is complex and theMAP (Maximum a

Posteriori) solution is di�cult to estimate. In order to avoid

local minima and to speed up the convergence rate, we use

a multigrid strategy [11]. The observation �eld remains at

the �nest resolution, only the MRF model will be hierar-

chically de�ned. The parameters of the Gibbs distributions

are adjusted automatically over scale.

We now present the di�erent steps of our unsupervised

segmentation method on real sonar images. Figure A0 rep-

resents two original observations. Figure B0 shows the re-

sult of the K-means clustering algorithm and Figure B1,



the representation of the two clusters associated to the

shadow and sea-bottom classes. The mixture of distribu-

tions is represented by Figure C0 and the �nal result of the

segmented image is reported in Figure C1. The obtained

results are given in Table I.

7. CONCLUSION

We have described a novel unsupervised iterative estima-

tion procedure based on the ICE algorithm which o�ers a

good estimation of the noise model and Gibbs distribution

parameters. This Estimation Step takes into account the

diversity of the laws in the distribution mixture of a sonar

image and can be used in a global estimation-segmentation

procedure in order to solve the hard problem of unsuper-

vised sonar image segmentation. This scheme is computa-

tionally quite simple, exhibits rapid convergence properties

and should be well suited to automatic extraction of infor-

mation from a large number of sonar images. This method

has been validated on several real sonar images demonstrat-

ing the e�ciency and robustness of this scheme. The exten-

sion of the method to unsupervised hierarchical segmenta-

tion (with inter-level connections) will be the topic of our

research.
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Fig A0: sonar picture Fig B0: K-means

(object and rock shadows) clustering procedure
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Representation of the two clusters
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Fig C0: Image histogram and Fig B1: representation

estimated mixture of the two clusters

Initialization : K-means

�
[0]
y(shadow)

0:11(�) 34(�) 149(�2)

�
[0]
y(sea�bottom)

0:89(�) 39(min) 2830(�2)

�
[0]
x 1:2(�1) 1:7(�2) � 0:3(�3) � 0:2(�4)

ICE procedure

�̂y(shadow)
0:10(�) 28(�) 34(�2)

�̂y(sea�bottom)
0:90(�) 39(min) 4960(�2)

�̂x 1:2(�1) 1:7(�2) � 0:2(�3) � 0:2(�4)

Table I: estimated parameters. � stands for the proportion of the
two classes within the sonar image. � and �2 stands for Gaus-
sian parameters (shadow area). min and � are the Rayleigh law
parameters (sea 
oor reverberation). �i's are the a priori pa-

rameters of the Markovian modeling. �[0] represents the initial

parameter estimates and the �nal estimates are written �̂.
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Fig C1: Multigrid MAP segmentation estimates
with parameters obtained with ICE procedure


