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ABSTRACT

We presents results obtained by different contrast
enhancement methods applied to medical images. We
take into account classical histogram specification, local
and wavelet-based techniques and a novel approach for
multiscale contrast enhancement. The latter, whose
rationale grounds in theories of visual perception,
exploits a local definition of the Fechner-Weber’s
contrast within the context of a non-linear scale-space
representation generated by anisotropic diffusion. Our
experimental fields concerns a difficult kind of medical
images, namely digital mammographic images.

1. INTRODUCTION

Our work focuses on contrast enhancement methods that
address the issue of using a multiscale representation. 

One such method was proposed in [1], with the aim of
overcoming the limits of classical techniques and of
encompassing advantages of multiresolution approaches.

Actually, classical methods try to enhance the contrast
of the input image without measuring the contrast itself.
A well known case is histogram specification [2].

Adaptive methods, on the contrary, take into account
a contrast C(x,y) locally defined. Beghdadi and Le
Negrate [3] have refined such approach so as to embed
the estimate of object edges while computing C(x,y). For
a given pixel (x,y), they calculate
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luminance of the local background RB  surrounding (x,y);
n gives the dimension of RB. The local contrast becomes
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Enhancement is obtained as  C’(x,y)=fenh(C(x,y))  where
fenh is chosen so that C(x,y)∈[0,1],  fenh(C(x,y)) >C(x,y)
and fenh(C(x,y))∈[0,1]. The enhanced values Ienh(x,y)
come from inversion of Eqn. 2. One critical aspect of the
method is the choice of the RB dimension, i.e. the size of
the window in which C(x,y) is estimated. Indeed it would
be appealing to average such estimate over a range of
windows of different size, thus achieving a sort of
multiple scale estimate.

Recently, such kind of issue has been stressed by
wavelet based methods [4,5]. Special attention has been
devoted to schemes relying upon the multiscale edge
representation originally developed by Mallat and Zhong
[6]. Namely, they define two oriented wavelets
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where φ(x,y) is a smoothing function. Under the
assumption that the image is a differentiable 2-D
function
I(x,y) L2∈ ( )R2 , the associated dyadic wavelet transform
(WT ) of I at scale 2j , at position (x,y) and in orientation
k is:
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sequence of gradients of I(x,y) smoothed by φ(x,y) at
dyadic scales. These are named the multiscale gradients
∇

2 j I x y( , ) . In such framework, contrast between objects

and regions can be enhanced through transformation of
edge gradients followed by reconstruction. It has been
shown (Lu and Healy, [4]) that is possible to enhance
contrast in the form

v (x,y)= k g (u )j j j j⋅  (5).

Namely, kj, gj(.), and uj represent a parameter, a
transformation function and the normalized gradient
magnitude respectively, all depending on scale 2j .
Taking  gj(x)=x, a linear “stretching” transformation
results. In general, different transformations at different
scales can be designed by Eqn. 5.

2. MULTISCALE ENHANCEMENT

In this Section, we give a review of the method presented
in [1]. The Fechner-Weber’s law defines the image
contrast as C L LT B= ln( / ), where LT and LB are the
luminances of a plain target and a plain background,
respectively. Such ideal relationship no longer holds
when either target or background is structured (e.g.
Figure 1(a)). In complex images it is necessary to take
into account two properties concerning perceived
contrast: it varies locally across the image; it is very
sensitive to edges. In order to deal with first property, we
exploit the concept of scale. The F-W law is modified so
that LT becomes the luminance I(x,y,t) of point (x,y) at
scale t (the local target); LB is the average luminance
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RB  at scale t. This yields to the local contrast at scale t

  C x y t I x y t I x y tB( , , ) ln( ( , , ) / ( , , ))=  (6).

We assume the optimal local contrast Copt(x,y) is the
contrast C(x,y,topt), computed at the optimal scale topt

selected among multiple scales. The multiscale
representation is built up by evolving a diffusion
equation over the original image. To design an edge
sensitive contrast enhancement (the second property), a
non-linear scale-space is generated by the anisotropic
diffusion equation [7]
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where ∇  indicate the gradient operator. In this case,
the diffusion coefficient D x y t g I( , , ) ( | | | | )= ∇
inhibits diffusion when local brightness transition is
significant.

Scale topt is selected as follows. Consider an image
containing targets of different brightness on a dark
background. Each target will exhibit an optimum
contrast response at a certain scale between the initial
scale and a late evolution. The optimal scale will
correspond to the scale where noisy background has been
smoothed, but yet diffusion has not blurred the target
itself. Notice that for each point (x,y) of the image, Eqn.
6 describes a contrast C(x,y,t)=Cx,y(t) evolving as a
function of scale t. We can assume the range of scales of
interest is an interval, say, 0≤ ≤ < < ∞t t tinf sup  , since

in principle scale t spans the whole real line but in
practice this is never the case. Thus Cx,y has a finite
norm and, owing to scale-space causality property, it is
continuous and concave. The optimal contrast can be
chosen as

C x y C topt t t t x y( , ) max | ( )|[ , ] ,inf sup
= ∈ (8).

Copt (x,y) is then enhanced by a function fenh:

 C x y f C x yenh enh opt( , ) ( ( , ))=  (9).

Eqn. 6 can be inverted as a function of C; at each
point (x,y) the enhanced output grey value Ienh (x,y) is
eventually calculated by substituting C with Cenh

according to Eqn. 9,  hence:

  I x y I x y C x yenh B enh( , ) ( , )exp( ( , ))= (10)

where  I x y I x y tB B opt( , ) ( , , )= . The proposed method has

a straightforward implementation by discretizing Eqn. 7
on a square lattice and choosing  n= dim(RB)=4.

3. EXPERIMENTAL WORK AND DISCUSSION

In this Section we provide an example of experimental
results obtained applying above discussed methods to
mammograms provided by courtesy of Istituto di Fisica
Sanitaria of Sant’Orsola Malpighi Hospital (Bologna,
Italy).  All images are digitized  at 300 dpi, at a
resolution of 12 bit/pxl, successively windowed to 8
bit/pixel, using a VIDAR VXR-12 scanner.

The experiments that have been performed can be
summarized as follows.

• Method 1: Histogram specification.
Rayleigh distribution



• Method 2: Locally adaptive contrast enhancement
(Beghdadi - Le Negrate)
Enhancement function f k Cenh opt= + ⋅ln( )1 , k=2.

• Method 3: Wavelet based multiscale edge
representation (Lu and Healy).

 4 decomposition scales; scale adaptive stretching
function (kj = 1/j , to enhance details)

• Method 4: Scale space contrast enhancement

g I= ∇ −1
5

9
5  , favoring diffusion with backward

sharpening across edges, f k Cenh opt= + ⋅ln( )1 ,  k =2.

The performance of each method has been globally
characterized by measuring the Shannon’s entropy and
locally evaluated by assessing the behavior of a scan line
profile. Actually, enhancement techniques that lead to
higher entropy are likely to extract the more relevant
information. It has to be noticed however that statistical
measures like entropy can characterize global
enhancement, but they lack of accuracy in local contrast
evaluation. To this end a complementary control can be
performed on a sample scan line intensity profile taken
from a cross-section of a local region of interest.

(a)

 pixel position
(b)

Figure 1: (a) original image (microcalcification cluster), with
superimposed the selected scan line [(x1=102, y1=0), (x2=102,
y2=255)]; (b) scan line profile

In the following we provide an example which is
representative of average results. The example uses the
image shown in Figure 1(a). The entropy of this image is
6,167741 bits. Figure 1(b) shows its scan line profile.

Entropies measured in contrast enhanced images are
given in Table 1.

Table1: Entropy of enhanced images
Enhancement

method
Enhanced

Images
Entropy (bits)

1 2 (a) 5,970697
2 2 (b) 6,190469
3 2 (c) 6,107545
4 2 (d) 6,926772

Figures 2 (e), (f), (g), (h) report typical results
obtained by profile evaluation. It can be seen that the
scale-space method improves contrast by local
enhancement of edges while maintaining the overall
shape of line profile; notice that background noise is not
enhanced. In conclusion, the proposed approach
encompasses advantages peculiar to locally adaptive
techniques and techniques based on WT. Its performance
is due to the following features: capability of estimating
local contrast over a range of scales; exploitation of edge
information; noise amplification control due to the
anisotropy of the diffusion process.
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Figure 2: (a), (b), (c), (d) show images enhanced by the different methods 1, 2, 3, and 4. (e), (f), (g), (h). plot the profiles of the same
selected scan line chosen in  Figure 1(b) [(x1=102, y1=0), (x2=102, y2=255)],  but measured on images (a), (b), (c), (d).


