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ABSTRACT

In electron tomographic reconstructions of biological
specimens the information about their structure is not
directly accessible since most of the signal is buried in
noise. An interpretation of the images using surface and
volume rendering techniques is difficult due to the noise
sensitivity of rendering algorithms. We explore the use of
various multiscale representations for denoising 2D and
3D images. Orthogonal wavelet transforms applied to
multidimensional data exhibit poor results due to the lack
of trandlational and directional invariance. Extending the
1D trandlation-invariant denoising algorithm of Coifman
and Donoho to higher dimensions proves to overcome the
poor performance of orthogonal wavelet transforms. We
present a method to quantify the loss of information due
to denoising artifacts on data with an unknown signal-
noise relationship, and propose a scheme for denoising of
such data. Experiments show invariant wavelet denoising
to perform well in reconstructing signals out of noisy 3D
data while preserving most of the actual information.

1. INTRODUCTION

Direct imaging of biological specimens (e.g.
macromolecular assemblies or cellular sections) using
transmission electron microscopy is a powerful tool in
structural molecular biology. In good approximation, the
obtained images are 2D projections of densities from the
imaged volume. By means of techniques similar to
medical computed tomography, it is possible to reveal the
true 3D information (e.g. tomographic reconstruction [7]).
Although electron microscopes are able to image
biological objects with a resolution down to 0.3 nm, the
structural information is not directly accessible since most
of the signal is buried in noise (SNR = 0 dB). An
interpretation of the images using surface and volume
rendering techniques is difficult due to the noise
sensitivity of rendering algorithms. A denoising algorithm
that is suitable for our application must be able to
preserve as much as possible of the signal while reducing
the noise to a sufficiently low level. We demonstrate the
applicability of the invariant wavelet representation in
reconstructing signal out of noisy 3D data with an
unknown signal-noise relationship.

2. MULTISCALE TRANSFORM BASED
DENOISING

A basic agorithm for denoising is to apply a suitable
signal transform to the noisy data, then applying some
thresholding scheme in the transform domain (thereby
suppressing coefficients smaller then a certain amplitude),
and finally inverting the transform. Denoising based on
wavelets has proven to be a suitable method for 1D
signals [2]. However, a straightforward extension to
multidimensional data gives very poor results due to the
lack of translational and directional invariance of
orthogonal wavelet transforms. Denoising artifacts are
intimately connected with the location and orientation of
discontinuities in the signal space. One approach [1] in
order to correct misalignments between features of the
signal and of the wavelet basis function is to apply a
range of shifts to the signal (i.e. changing the feature
positions) and average over the obtained result (cycle
spinning). In a higher-dimensional signal space this shift
can be translational or rotational (or a combination of
both). We denote the noisy data to be x, T is the
denoising operator, S, is the translational/rotational shift
operator refering to all discrete values belonging to the
trandlational/rotational degrees of freedom A in the signal
space. Thus, the invariant denoising operator is
T(x;S,) = Ave[ S, (T(S,0)]. 1)
Although a naive implementation of this operator would
be very impractical as for the computational costs,
extending the fast 1D-algorithm of [1] to higher
dimensions reduces the costs considerably.

Another approach to improve on orthogonal wavelet
transform in 2D is the steerable pyramid [3]. This
representation is an overcomplete, multiscale, and multi-
orientation transform with the property being jointly
translation- and direction-invariant in a weak sense.
Although computationally very efficient in 2D, an
extension of the steerable pyramid for higher dimensions
seems to be quite difficult due to the iterative optimization
procedure used to synthesize the basis functions.

We decide for the modification of the coefficients to
utilize the soft-thresholding function
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with y =0 for |x| <A asproposed in [2]. Every individual
subband (for the steerable pyramid every oriented subband)
is thresholded with a different threshold value A. An
optimum choice of the threshold depends on the exact
knowledge of the spectral signal-to-noise relationship
which is not available for our type of imagery. Instead, we
choose to shrink the subbands by a certain quantile of the
bands. We find that soft-thresholding by the median value
(50% quantile) gives very acceptable results. The choice of
the median is motivated by the fact that an appropriate
multiscale transform can efficiently compress the signal
into a small number of significantly large coefficients,
whereas noise spreads out as small coefficients in each
band. Thresholding by the median value is robust in terms
of keeping the large coefficients (i.e. the signal) while
considerably reducing the noise power.

3. TEST RESULTS

A widely used method for signal reconstruction in
electron microscopy images is to average over a large
number of redundant structures, thus reducing the additive
image noise. We assume the averaging to be an ideal
denoising procedure, i. e. causing no denoising artifacts.
In the following we utilize a statistical method to evaluate
the quality of denoising when applied on redundant
structures in order to infer to the quality on unigue, non-
repeatable structures. To quantify the spectral dependency
of denoising artifacts when using multiscale transforms
we employ the radia correlation function (RCF) [5], also
called Fourier ring correlation. The RCF compares two
statistically independent averages from the original (f,)
and denoised data (f,) by inspecting their Fourier
coefficients along rings in the Fourier space. A normalized
sum from the complex multiplication of the spatial
coefficients along individual ringsis calculated and plotted
against the corresponding spatial frequency w:
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with F=FT{f} and F" denoting the complex conjugate
of F.

The determination of the denoising artifacts was carried
out on 2D electron microscope images containing 3096
characteristic views of one type of molecule (see Fig. 1-
left). The averaging requires mutual alignment of the
objects with respect to rotation and translation. The
alignment of the denoised data refers to the alignment
parameters as obtained from the original data (this ensures
independence from possible denoising artifacts). The radial
correlation function from the original data reflects the
transmission of the used electron microscope over the
relative frequency. Fig. 1 (right) shows the considerable
deviations in the radial correlation functions between
original and orthogonal wavelet denoised data. Steerable
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pyramid denoising as well as translation- and rotation-
invariant denoising [4] performs much better. However,
the computational costs of the latter are considerably
higher. When comparing soft and hard thresholding [2] we
observe soft tresholding to be much better in removing
noise compared to hard thresholding while keeping the
same amount of signal.

We attempt to denoise 3D data by two means: (i) slide-
by-dlide pseudo-3D denoising and (ii) denoising based on a
full 3D transform. We apply denoising to synthetic test
data as well as to three-dimensionally reconstructed
volumes of unique, non-repeatable structures obtained by
electron tomography [6]. Due to the limited tilt angle
(£60°) of the electron microscope, the tomographic
reconstruction has an orientation-dependent information
content (a limited information in z-direction). In order to
quantify the effect of denoising synthetic 3D-data we
defined three measures: (i) noise reduction as the ratio of
the standard deviations of the noise between noisy and
denoised data, (ii) mean square error between original
(noise-free) and denoised data, and (iii) cross-correlation
coefficient between original and denoised data. The results
of the tests are given in Table 1 as well asin Fig. 3. For
the 3D denoising we observe the truly 3D invariant
anisotropic wavelet representation [4] (Fig. 3g) to
outperform the pseudo-3D steerable pyramid representation
(Fig. 3f). Orthogonal wavelet denoising causes strong
artifacts with increasing dimensionality of the transform,
see Fig. 3d,e. 3D orthogonal wavelet denoising gives
unacceptable results in terms of preserving the signal and
removing the noise, see Fig. 3 (d) .Visua comparison
(Fig. 2,3,4) aswell as the proposed quantitative measures
show the potential of invariant wavelet transforms for
denoising 3D data. For comparison we applied median
filtering to the test data Fig. 3 (c). Although median
filtering removes a considerable amount of noise it also
tends to weaken the signal and is therefore of no use for
our application.

4. CONCLUSIONS

The interpretation of electron tomographic
reconstructions using rendering techniques is difficult due
to the strong image noise. We were therefore looking for
algorithms to remove noise in 3D data while preserving
the signal. A direct extension of 1D wavelet denoising [2]
to higher dimensions is not possible due to the lack of
invariance, resulting in a weak signal representation and
strong denoising artifacts. Steerable pyramid provides a
well-suited tool for denoising 2D images. However,
extending the technique to higher dimensions is rather
difficult. We show for the wavelet representation the
redundancy imposed by translation- and direction-
invariance to be necessary for denoising 3D data. Thus, we
demonstrate the applicability of the invariant wavelet
representation for denoising 3D data. Furthermore, we
propose a thresholding scheme for denoising data with an
unknown signal-noise relationship.
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Figure 1. (left) Subframe of the test scene for denoising: low-dose, bright-field transmission electron micrograph of the
proteasomal a-subunit from Thermoplasma acidophylum [6], negative staining with uranyl acetate, fixation on carbon foil,
pixelsize corresponds to 0.4 nm, superimposed the average of 3096 molecules; (right) radial correlation functions for original, 6-

orientation steerable pyramid, translation- and rotation-invariant anisotropic wavelet,

and periodized orthonormal wavelet

(PO) denoised with Symmlet 8 wavelet kernel and soft thresholding for similar noise reduction

Figure 2: Isosurface representation from electron tomographic reconstruction of a DMPC vesicle, limited tilt angle -58°/+58°, 58

projections, vitreous ice embedding, width corresponds to ca. 100 nm, &) original data; b) orthogona wavelet denoised;
c) translation- and rotation-invariant anisotropic wavelet denoised; for (b, c) Symmlet 8 wavelet kernel and soft thresholding
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Figure 3: Isosurface representation of synthetic data (cube with 256x256x256 pixels) to be corrupted with white Gaussian noise
0=3; a) original data; b) noisy data; ¢) median filtering d) pseudo-3D orthogonal wavelet denoised €) 3D orthogonal wavelet

denoised; f) 6-orientation steerable pyramid pseudo-3D denoised, g) 3D translation-invariant anisotropic wavelet denoised;
for (d ,e ,g) Haar wavelet kernel; for (d ,e ,f, g) soft thresholding

data noise reduction mean sguared error cross-correlation

coefficient

noisy data / 2.35 0.0756

median filtered 4.01 0.570 0.262

pseudo-3D orthogonal wavelet denoised 4.85 0.516 0.141

3D orthogonal wavelet denoised 4.81 0.421 0.114

6-orientation steerable pyramid denoised 4.61 0.420 " 0.183 *

3D translation-invariant wavelet denoised 8.26 0.251 0.252

Table 1: Noise reduction, mean squared error, and cross-correlation coefficient for the datain Fig. 3
* Note: The steerable pyramid inherently does not provide a perfect reconstruction. However, the reconstruction error of the
steerable pyramid was found to be negligible here.

Figure 4: Isosurfacerresentation from electron tomographic reconstruction of a DMPC vesicle with actin filaments, limited tilt
angle -58°/+58°, 58 projections, vitreous ice embedding, diameter corresponds to ca. 100 nm, a) original data; b) orthogonal

wavelet denoised; c) translation- and rotation-invariant anisotropic wavelet denoised; for (b, ¢) Symmlet 8 wavelet kernel and soft
thresholding



