
A BAYESIAN APPROACH TO BLIND DECONVOLUTION BASED ON DIRICHLET

DISTRIBUTIONS

Rafael Molina1 Aggelos K. Katsaggelos2 Javier Abad1 Javier Mateos1 �

1Departamento de Ciencias de la Computaci�on e I.A., Universidad de Granada, 18071 Granada, Espa~na.
2Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208-3118

ABSTRACT

This paper deals with the simultaneous identi�cation of
the blur and the restoration of a noisy and blurred im-
age. We propose the use of Dirichlet distributions to model
our prior knowledge about the blurring function together
with smoothness constraints on the restored image to solve
the blind deconvolution problem. We show that the use of
Dirichlet distributions o�ers a lot of 
exibility in incorpo-
rating vague or very precise knowledge about the blurring
process into the blind deconvolution process. The proposed
MAP estimator o�ers additional 
exibility in modeling the
original image. Experimental results demostrate the per-
formance of the proposed algorithm.

1. INTRODUCTION

The blind deconvolution problem refers to a class of prob-
lems of the form

g(x) = d(x) � f(x) + n(x); x = (x1; x2) 2 
; (1)

where 
 � R
2 is the support of the image, and

f(x); g(x); d(x) and n(x) represent respectively the origi-
nal image, the observed image, blur operator (PSF) and
observation Gaussian independent noise with variance �2n.
The operator (�) in equation (1) denotes 2�D convolution
given by

d(x) � f(x) =
X
s2D

d(s)f(x� s); (2)

where D � R
2 is the support of d(s). We shall also assume

that the support of the PSF is known and that the PSF is
centered around zero. k + 1 shall denote the size, number
of pixels, of the support of the PSF.
In classical image restoration the blurring function is

given, and the degradation process is inverted using one
of the many known restoration algorithms. The various ap-
proaches that have appeared in the literature depend on the
particular degradation and image models [1].
There are two main approaches to the blind deconvolu-

tion problem [2, 3]. With one of them, the PSF is identi�ed
separately from the original image, in order to use it later
with one of the known image restoration algorithms while,
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with the other, the identi�cation procedure is incorporated
into the restoration procedure.
Recently You and Kaveh [7] have proposed a new method

that incorporates smoothness constraints in both the im-
age and blur models. This new method assumes piecewise
smoothness of the PSF, that is modeled as a Gaussian pro-
cess.
In this paper we propose a method based on the Bayesian

approach to the blind deconvolution problem. We shall use
a Dirichlet distribution as the blur model and show how
to incorporate from very vague to very precise knowledge
about the blurring process in the blind deconvolution prob-
lem.
The paper is organized as follows. In section 2. we de-

scribe the paradigm to be used to address the blind deconvo-
lution problem, together with the image and noise models.
The blur model is then described in section 3.. Section 4.
describes the MAP estimator of the original image and the
blurring function at the same time. Finally, in section 5.
experimental results are shown and section 6. concludes the
paper.

2. BAYESIAN PARADIGM

The Bayesian paradigm dictates that the inference about
the true f and d should be based on p(d; f j g) given by

p(d; f j g) = p(g j f; d)p(f)p(d)=p(g)

/ p(g j f; d)p(f)p(d): (3)

Maximization of equation (3) with respect to f and d yields

f̂ ; d̂ = argmax
f;d

p(f; d j g); (4)

the maximum-a-posteriori (MAP) estimator. Let us then
proceed to study the prior and degradation models we pro-
pose to use for this problem. Although the theory we shall
develop here can be applied to any quadratic prior on f , we
shall study in full two particular priors [4] .
Our prior knowledge about the smoothness of the object

luminosity distribution makes it possible to model the dis-
tribution of f by a conditional autoregression [5] (CAR).
Thus,

p(f j�)/ exp
�
�
1

2
�f

t(I � �N)f
	
;

where Nij = 1 if cells i and j are spatial neighbors (pixels
at distance one), zero otherwise and � is equal to 0.25. The



term f t(I��N)f represents in matrix notation the sum of
squares of the values fi minus � times the sum of fifj for
neighboring pixels i and j (we denote by fi the i-th entry
of the vector f).
We shall also use the simultaneous autoregressive model

(SAR). This model is characterized by

fi � �
X

j nhbr i

fj = �i;

with �i independent and zero mean Gaussian with variance
��1. Then, the corresponding distribution is

p(f j�)/ expf�
1

2
�f

t
C

t
C fg: (5)

A simpli�ed but realistic degradation model for many
applications is the one de�ned in equation (1) with Gaussian
noise, that is,

g(i) = (Df)(i) + n(i) =
X
j

d(i� j)f(j) + n(i);

where D is the p � p matrix de�ning the systematic blur,
assumed to be unknown and approximated by a block cir-
culant matrix, n(i) is the additive Gaussian noise with zero
mean and variance �2n and d(j) are the coe�cients de�ning
the blurring function.
Then, the probability of the observed image g if f were

the `true' image and D the blurring matrix is

p(g j f) / exp
h
�

1

2�2n
kg �Dfk

2

i
: (6)

3. BLUR MODEL

Having de�ned the image and degradation models, let us
examine the blur model. A di�erent way is proposed in this
paper to impose a smoothness constraint on the blur. First,
we give a few de�nitions and properties of the Dirichlet
distribution which is proposed to be used as the blur prior
(see, for instance, [6])
The k-variate analogue of the beta distribution is the dis-

tribution having the density function

p(d(1); : : : ; d(k)) =
�(�0 + �1 + �2 + � � �+ �k)

�(�0)�(�1) � � ��(�k)
�

(1� d(1)� � � � � d(k))�0�1 �

d(1)�1�1 � � �d(k)�k�1; (7)

at any point in the simplex

Sk = (d(1); : : : ; d(k)) : d(i) � 0; i = 1; : : : ; k;

kX
i=1

d(i) � 1; (8)

and zero outside, where the �i are all real and positive, and
�(�) denotes the gamma distribution. We shall refer to a dis-
tribution having the density function given in equation (7)
as the k-variate Dirichlet distributionD(�1 : : : �k;�0). It is
important to note that we have selected d(0) as the part

d(4) d(3) d(2)

d(5) d(0) d(1)
d(6) d(7) d(8)

Figure 1. Blurring coe�cients.

of the blurring function de�ned by 1�
P

k

i=1
d(i) and that,

obviously,
Pk

i=0
d(i) = 1 for this distribution.

The next step is to examine some of the properties of
this distribution. We have the following expressions for the
mean, E[d(i)], the variance, var[d(i)] an the covariances,
cov[d(i); d(j)], respectively

E[d(i)] =
�i

�0 + �1 + � � �+ �k
i = 1; : : : ; k;

var[d(i)] =

�i(�0 + �1 + � � �+ �k � �i)

(�0 + �1 + � � �+ �k)2(�0 + �1 + � � �+ �k + 1)
;

i = 1; : : : ; k;

and, for i; j = 1; : : : ; k,

cov[d(i);d(j)] =

�
�i�j

(�0 + �1 + � � �+ �k)2(�0 + �1 + � � �+ �k + 1)
:

The above expressions also hold for d(0), since d(0) = 1�Pk

i=1
d(i).

The following result can be used to simulate conditional
distributions. If (d(1); : : : ; d(k)) is a vector random variable
having the k-variate Dirichlet distributionD(�1; : : : ; �k ;�0)
then the marginal distribution of (d(1); : : : ; d(k1)), k1 < k,
is the k1-variate Dirichlet distribution D(�1; : : : ; �k1 ;�0 +
�k1+1 + � � �+ �k). More interesting properties of this dis-
tribution can be found in [6].

Let us now interpret the parameters involved in the
Dirichlet distribution. It is clear that modifying the val-
ues of �i; i = 0; : : : ; k, we are able to model our prior
knowledge about the blurring process. For instance, �i =
const; i = 0; : : : ; k, could be used to model an out of focus
and also a motion degradation. Furthermore is we write
�i = �� const; i = 0; : : : ; k, the expected mean values are
the same but the uncertainty of the model, the variance of
each d(i), changes continuously with �. Furthermore if for
two indices i and j, �i is greater than �j we are expect-
ing d(i) to be greater than d(j) although by modifying the
variances we include our uncertainty on the model.
It is also clear that the Dirichlet distribution can be used

in situations where we know, for instance, that all pixels
at the same distance from the origin have the same weight
(see �gure 1). De�ning ~d(0) = d(0), ~d(1) = d(1) + d(3) +

d(5) + d(7) and ~d(2) = d(2) + d(4) + d(6) + d(8) we can

use a Dirichlet distribution for ~d(0); ~d(1) and ~d(2) and then
obtain the corresponding blurring values. It is also obvious
how to model a blurring function with weights decaying
with the distance from the origin.
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Figure 2. (a) Degraded (a) and Restored (b) Images.

4. FINDING THE MAP ESTIMATE

If the blur operator d(x) is exactly known, the Bayesian ap-
proach to image restoration seeks to minimize the following
function

�

2
jjCf jj

2+
�

2
jjg �Df jj

2

subject to
0 � min � f̂(x) � max <1: (9)

with � = 1=�2n.
Applying the Bayesian paradigm to the blind deconvolu-

tion problem, we try to maximize equation (3) with respect
to f and d. In our problem, this is equivalent to minimizing

L(d; f) =

kX
i=0

(�i � 1) ln(d(i)) +
�

2
jjCf jj

2+
�

2
kg �Dfk

2
;

(10)
where d(0) = 1�d(1)��� ��d(k)) subject to the conditions
in equations (8) and (9).
Many optimization procedures can be employed to min-

imize equation (10). However, as in [7] there is a scale
problem in L(d; f) which, if not treated carefully, may un-
dermine our minimization e�ort (see [7] for details).

4.1. Alternating Minimization

In this subsection, following [7], we seek to avoid the scale
problem by following the idea of coordinate descent [1], and
to minimize equation (10) by descending with respect to the
PSF and the image separately and alternatively. The steps
are the following

� Fix, f(x), x 2 
, descend equation (10) with respect
to d(x), x 2 D.

� Fix d(x), x 2 D, descend equation (10) with respect to
f(x), x 2 
.

Let
L(d; f jd) = L(d; f) with d �xed (11)

and
L(d; f jf) = L(d; f) with f �xed. (12)

Then the above idea can be developed into the following
iterative algorithm

1. Initialization:

f
0(x) = g(x) and d

0(x) = random numbers

2. nth iteration

(a) Descend in d, L(d; fn�1jfn�1) to obtain dn

(b) Descend in f , L(dn; f jdn) to obtain fn

3. Stop when converged.

The convergence of the algorithm to one of the local min-
ima of L(d; f) can be established by noting the fact that
both steps 2a and 2b always decrease L(d; f).
Since the descents with respect to the PSF and the im-

age are separate, they can use di�erent methods to descend
the corresponding function. In our examples we have used
steepest descent for d in step 2a and exact deconvolution
methods based on Fourier analysis for step 2b.

5. EXPERIMENTAL RESULTS

In this section we apply the method using the typical cam-
eraman image. The original image was �rst blurred with
the PSF shown in �gure 4(a) and then noise of 30dB was
added to obtain the image shown in �gure 2(a). Then we
minimized the function. The function


 ln(d(0)) + 4
 ln(d(1)) +
�

2
jjCf jj

2+
�

2
kg �Dfk

2

is then minimized, where d(1) = d(1) + d(3) + d(5) + d(7),
d(0) + d(1) = 1 and we also assumed that d(2) = d(4) =
d(6) = d(8) = 0 in the iterative algorithm.
Step 2a in the iterative algorithm was implemented us-

ing a gradient descent method and step 2b using Fourier
analysis. The parameters used were 
=(

P
i
g(i)) = 0:002,

� = 1=9 and � = 1=300.
The estimated PSF is shown in �gure 4(b) and the re-

stored image is shown in �gure 2(b).
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Figure 3. (a) Degraded (a) and Restored (b) Images.
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Figure 4. (a) Original (a) and Estimated (b) Blurs.
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Figure 5. (a) Original (a) and Estimated (b) Blurs.

We also run the method for the same image blurred with
the PSF shown in �gure 5(a). Then noise of 30dB was
added to obtain the image shown in �gure 3(a). The func-
tion


 ln(d(0))+4
 ln(d(1))4
 ln(d(2))+
�

2
jjCf jj

2+
�

2
kg �Dfk

2

was minimized, where d(1) = d(1)+d(3)+d(5)+d(7), d(2) =
d(2) + d(4) + d(6) + d(8) = 0 with d(0) + d(1) + d(2) = 1.
The parameters used were 
=(

P
i
g(i)) = 0:0025, � = 1=9

and � = 1=600. The estimated PSF is shown in �gure 5(b)
and the restored image is shown in �gure 3(b).

6. CONCLUSIONS

In this paper we have proposed the use of Dirichlet distri-
butions to model our prior knowledge about the blurring
function together with smoothness constraints on the re-
stored image to solve the blind deconvolution problem.
We have shown that the use of Dirichlet distributions of-

fers a lot of 
exibility in incorporating vague or very precise
knowledge about the blurring process into the blind decon-
volution process and also that the proposed MAP estimator
o�ers additional 
exibility in modeling the original image.

We are currently working on improving the iterative
scheme for the PSF estimation and also on the estimation of
the �;� and 
 following the evidence and MAP approaches
to hyperparameter estimation.
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