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ABSTRACT

In coded aperture imaging the attainable quality of the

reconstructed images strongly depends on the choice of the

aperture pattern. Optimum mask patterns can be designed

from binary arrays with constant sidelobes of their peri-

odic autocorrelation function, the so{called URAs. How-

ever, URAs exist for a restricted number of aperture sizes

and open fractions only. Using a mismatched �lter decoding

scheme, artifact{free reconstructions can be obtained even

if the aperture array violates the URA condition. A gen-

eral expression and an upper bound for the signal{to{noise

ratio as a function of the aperture array and the relative

detector noise level are derived. Combinatorial optimiza-

tion algorithms, such as the Great Deluge algorithm, are

employed for the design of near{optimum aperture arrays.

The signal{to{noise ratio of the reconstructions is predicted

to be only slightly inferior to the URA case while no restric-

tions with respect to the aperture size or open fraction are

imposed.

1. INTRODUCTION

Coded aperture imaging (CAI) [1, 2] has evolved as a stan-

dard technique for imaging high energy photon sources and

has found numerous applications, e. g., in X{ and gamma{

ray astronomy and in nuclear medicine. As its major ad-

vantage over conventional imaging systems using rastering

or pinhole collimators, CAI provides a better photon collec-

tion e�ciency while preserving high angular resolution.

In coded aperture imaging a mask of transparent and

opaque elements is placed in front of a position sensitive de-

tector. The image recorded by the detector can be thought

of as the superposition of many pinhole camera images per-

taining to the individual aperture openings. With a suit-

able aperture choice it is possible to reconstruct the original

image from the detector data and to improve the signal{to{

noise ratio (SNR) with respect to a single pinhole aperture.

An important parameter in the design of the aperture

array is the open fraction � which is de�ned as the ratio of

the transparent to the total aperture area. In the literature,

several approaches to the computation of the optimum value

of the open fraction have been taken (e. g., [3, 4, 5]). While

the di�erent approaches lead to di�erent numerical results,

it seems to be agreed upon that the optimum open fraction

is a function of the relative detector noise level �, i. e., the
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Figure 1. Coded aperture imaging system.

ratio of unmodulated detector background noise to the total

intensity of the sources to be imaged.

The most commonly used aperture patterns are Uni-

formly Redundant Arrays (URAs) [6], i. e., arrays with con-

stant sidelobes of their periodic autocorrelation function. If

URAs are used as coded masks, the source distribution can

be reconstructed from the coded image by correlating it

with the aperture array itself. We will refer to this decod-

ing scheme as matched �ltering. If any other arrays than

URAs are used, then matched �ltering will lead to artifacts,

i. e., systematic errors in the reconstruction. Unfortunately,

URAs exist for a limited number of array sizes and open

fractions only.

In this contribution, we propose a coded imaging setup

which does not impose any restrictions to the aperture size

or open fraction. We use mismatched �ltering in order

to obtain an artifact{free reconstruction for almost arbi-

trary aperture arrays. Our approach to the aperture design

is based upon stochastic combinatorial optimization tech-

niques, such as Simulated Annealing or the Great Deluge

algorithm. For comparison, we also examine simple gra-

dient search strategies. While these algorithms almost al-

ways fail to �nd the true optimum array, they were found

to yield aperture masks with near{optimum performance in

all cases.

2. SYSTEM MODEL

For our analysis we assume the standard arrangement used

by most authors (e. g., [3, 6]) depicted in Figure 1. The

aperture consists of a 2 � 2 mosaic of a basic pattern of

Nx � Ny elements. The detector has the same size and

the same number of elements as one basic aperture pattern.



With this setup, it is possible to reconstruct an area of

Nx�Ny source pixels, the so{called fully coded �eld of view
(FCFV). The detector image d(i; j) can be expressed as

d(i; j) = [s(Nx � i; Ny � j) � a(i; j)] + n(i; j) + b (1)

where i 2 f0; 1; : : : ; Nx�1g, j 2 f0; 1; : : : ; Ny�1g, s(i; j)
is the source distribution to be imaged, a(i; j) is the ba-

sic aperture array consisting of ones (transparent elements)

and zeros (opaque elements), and the � symbol denotes the
two{dimensional periodic convolution. In high energy pho-

ton imaging, the predominant noise source is typically the

quantum noise due to the counting statistics at the detector.

The term n(i; j) models this quantum noise and is assumed

to be Poisson distributed with zero{mean. The term b is

the signal independent detector background noise which is

assumed to be constant over the entire detector area. Note

that, particularly in astronomical applications, this detector

noise may be by some orders of magnitude larger than the

sources to be imaged. For the reconstruction, we assume

that we can (at least approximately) subtract the detector

noise b. If this is not the case in practice, b will yield a con-

stant o�set in the reconstruction. As a quite general decod-

ing scheme, we assume that, after background subtraction,

the detector image is �ltered using some two{dimensional

decoding �lter g(i; j), i. e.,

ŝ(i; j) = [d(Nx � i; Ny � j)� b] � g(i; j)

= s(i; j) � [a(Nx � i; Ny � j) � g(i; j)]

+ n(Nx � i; Ny � j) � g(i; j): (2)

If g(i; j) is chosen as the correlational inverse of a(i; j), i. e.,

such that a(Nx�i; Ny�j)�g(i; j) equals a two{dimensional
Dirac pulse, then an artifact{free reconstruction, i. e., a

reconstruction free of systematic errors, is obtained. Note

that the correlational inverse can be easily computed, e. g.,

in the discrete Fourier domain [7]. It exists unless a(i; j) has

DFT coe�cients equal to zero. Under the aforementioned

assumptions, it can be shown [8] that the signal{to{noise

ratio of the reconstructed image is given by

SNR =

r
IT

N (�+ �)Eg

(3)

where IT =

P
s(i; j) is the total source intensity within the

FCFV, N = NxNy denotes the total number of elements of

one basic aperture pattern, � =

P
a(i; j)=N is the open

fraction of the aperture, � = b=IT denotes the relative de-

tector noise level, and Eg =

P
g
2
(i; j) is the signal energy

of the decoding �lter g.

The objective of aperture design now is to choose a(i; j)

such that the SNR is maximized for a given aperture size

Nx � Ny and detector noise level �. We will �rst assume

the open fraction � to be �xed. Maximization of the SNR is

then equivalent to minimizing Eg. Let A(i; j) and G(i; j)

denote the discrete Fourier transforms of a(i; j) and g(i; j),

respectively. Since g was assumed to be the correlational in-

verse of a, we have G(i; j) = 1=A
�

(i; j), and with Parseval's

theorem

Eg =

X
i; j

g
2
(i; j) =

1

N

X
i; j

1

jA(i; j)j2
: (4)

Furthermore, for a �xed open fraction we know that

A(0; 0) = �N and

P
jA(i; j)j2 = N

P
a
2
(i; j) = �N

2
.

Subject to these constraints, the expression in Equation (4)

obviously takes on its minimum if and only if

jA(i; j)j
2
=

�(1� �)N
2

N � 1

8(i; j) 6= (0; 0): (5)

The periodic autocorrelation function of arrays which sat-

isfy (5), is given by

~'aa(i; j) =

(
�N if i = j = 0;

�N(�N � 1)

N � 1

otherwise:
(6)

This demonstrates that URAs, i. e., binary arrays with con-

stant sidelobes of their periodic autocorrelation function,

are optimum with respect to maximization of the SNR of

the decoded images. For URAs the decoding �lter g has,

except for a scaling factor and a constant o�set, the same

structure as the aperture array. The reconstruction can

therefore be interpreted as a matched �ltering. So far we

have assumed the open fraction to be �xed. The optimum

value which should be chosen for �, depends on the relative

detector noise level �. According to the optimization crite-

rion used here, it converges to 0:5 for large �, i. e., if the

detector noise is large with respect to the imaged sources in

the �eld of view, and to zero (single pinhole aperture) for

small �. Note, however, that di�erent optimization crite-

ria may lead to di�erent numerical results for the optimum

open fraction (e. g., [3, 4, 5]).

A survey of known construction methods for URAs can be

found in [9]. Unfortunately, URAs are known only for a very

limited number of aperture sizes and open fractions. For a

large number of aperture sizes, the nonexistence of URAs

is proven [9]. In practice the aperture size may be con-

strained, e. g., by the available detector size and resolution,

and cannot always be chosen arbitrarily. It may therefore

be necessary to design coded masks of a given size and open

fraction for which no URA exists. In this case the aperture

design task becomes a very high{dimensional combinatorial

optimization problem, its objective being the maximization

of a \quality function" Q = ((�+ �)Eg)
�1

where both �

and Eg depend on the aperture pattern. The analytical

results which have been obtained for URAs, constitute an

upper bound for the SNR. Note that this bound can only

be attained for aperture sizes and open fractions for which

URAs actually exist.

Due to the large dimensionality of the optimization prob-

lem, an exhaustive search for the best aperture array is ob-

viously unrealistic. The approach taken in this paper is to

utilize heuristic optimization algorithms, e. g., Simulated

Annealing or the Great Deluge Algorithm, to design good,

but not necessarily optimum, aperture arrays.

3. COMBINATORIAL SEARCH
ALGORITHMS

The most straightforward search strategy we have explored

is a simple gradient search ("Hill Climber"). Starting at

some random array, each array element is temptatively tog-

gled (from one to zero or vice versa) and the resulting

change in the quality function is computed. The modi�-

cation with leads to the largest increase is accepted. This

search is repeated until no further rise of the quality func-

tion is possible. In the following, we will refer to this as the

GS1 algorithm.

In our application, evaluation of the quality function Q is

computationally very expensive since it involves computing



the DFT or FFT of the aperture array. This fact suggests

a modi�cation to the GS1 algorithm: In each step, a single

array element is selected at random. If inverting this ele-

ment increases Q, then the change is immediately accepted,

otherwise a new array element is chosen at random. This

GS2 algorithm was found to work signi�cantly faster than

GS1, particularly for larger arrays, without any noticeable

loss in the �nal quality function.

GS1 and GS2 share the disadvantage that they termi-

nate in some local maximum of the quality function which

may not be the desired solution. Therefore, various heuris-

tic search strategies such as \Simulated Annealing" [10],

\Threshold Accepting" [11], the \Great Deluge Algorithm"

[12] and the \Record{to{Record Travel" [12] have been de-

veloped. These algorithms have in common that they do

accept, under certain conditions, a change even if it leads

to a temporary reduction of the quality function. Large de-

creases are less likely to be accepted than small ones, and

during the execution of the algorithm the conditions for ac-

cepting a decrease become more and more stringent (\cool-

ing" process in Simulated Annealing). The algorithms have

converged when the quality function cannot be further in-

creased and when no reduction of the quality function is

acceptable any more. The heuristic search algorithms have

the chance to travel through more local optima than the

gradient search strategies. The probability for them to �nd

\better" maxima, though usually not the global maxima, is

therefore increased.

4. RESULTS

Applied to the aperture array design problem, we have

found all of the mentioned heuristic search algorithms to

perform similarly well. The Great Deluge Algorithm (GD)

was selected for closer examination since it appeared to

yield slightly better results in some cases [13]. Surprisingly

good results were also obtained with the GS2 algorithm.

However, for larger aperture sizes, the GD algorithm clearly

outperformed GS2.

In the GD algorithm, convergence is controlled by a so{

called \water level" W which, at any time, is less than or

equal to the current value of the quality function Q. A

change is accepted if and only if the new value of Q is still

above the water level. By gradually increasing W the al-

gorithm is forced to converge. Crucial aspects in the ap-

plication of the GD algorithm are the choice of the initial

water level W0 and the scheme for increasing W in each

step. W0 should be small enough to initially accept almost

any change. We have estimated the mean � and the stan-

dard deviation � of the quality function from a number of

randomly chosen aperture arrays and chosen W0 = �� c�

where c = 1 was found to yield su�ciently small initial wa-

ter levels. The best results were obtained when the water

level was increased adaptively according to

Wi+1 =Wi + d (Qi �Wi); 0 < d < 1 (7)

in the i{th step. This scheme ensures that the water level

rises quickly when the current value of the quality function

is much higher than the water level while it rises only slowly

when no more large increases of the quality function occur.

The parameter d allows to control the convergence speed

of the Great Deluge algorithm. If it is large (c � 0:1), the

algorithm converges quickly, but does not yield signi�cantly

better results than GS2. If d is smaller (10
�5

: : : 10
�3
),

convergence is slow, but the results become signi�cantly

better.

Figure 2 shows some of the results obtained with the GD

algorithm for one{dimensional apertures. In this example,

the detector noise was assumed to be predominant (� !1).

The values on the vertical axis of Figure 2 are coding gains,

i. e., the signal{to{noise ratios according to Equation (3)

normalized to the SNR of a single pinhole aperture. The

solid line shows the analytically computed upper bound.

Note that in computation of the bound we have assumed

that URAs exist for all aperture sizes. Therefore, the bound

can only be attained in cases where a Uniformly Redundant

Array actually exists. These URAs are marked with � signs

in the �gure. The circles mark the gains of the arrays found

by the GD algorithm. For N � 20, the results of an exhaus-

tive search are also displayed (+ signs). Note that for these

small lengths, the GD algorithm always succeeded in �nd-

ing the optimum arrays. For N = 43, it failed to �nd the

existing URA for the �rst time.
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Figure 2. Comparison of one{dimensional aper-
tures designed using the GD algorithm to the upper
bound (� !1).

As a more realistic case, we have designed a two{

dimensional aperture array of size 41 � 43 for � !1. For

this size, a Uniformly Redundant Array with open fraction

� � 0:5 does exist which allows a quantitative assessment of

the heuristically designed apertures. For a fair comparison

of the GD and GS2 algorithms, we have allowed both algo-

rithms to compute 36 hours on a SPARC 20 workstation.

During this time, the GS2 algorithm performed many gra-

dient searches starting from di�erent random arrays. The

best result of the gradient searches was taken as the �nal

result. The GD algorithm performed only one search start-

ing from a single random array. Table 1 shows the coding

gains achieved by the two search strategies and the coding

gain of the URA. Even though both algorithms failed to

�nd the URA, their results are only marginally inferior to

the optimum aperture.

Aperture Gain Transmission �

GS2 12.89 dB 0.503

GD 12.97 dB 0.494

URA 13.22 dB 0.500

Table 1. Results for 41� 43 aperture and � !1.



Figures 3 and 4 show the aperture array found by the

GD algorithm and its periodic autocorrelation function, re-

spectively. Figure 4 demonstrated that the autocorrelation

sidelobes of the found arrays are reasonably 
at, hence, the

array is a good approximation to the URA.

Figure 3. 41 � 43 aperture array found using the
Great Deluge Algorithm for � !1.
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Figure 4. Periodic autocorrelation function of the
array shown in �gure 3.

An interesting observation we made was that the open

fractions of the heuristically designed aperture arrays were

in most cases slightly larger than the theoretically expected

values, particularly for smaller background levels. Since this

was also true for arrays found by exhaustive search for small

aperture sizes, we suspect that the theoretical values tend to

underestimate the optimum open fractions. Note that the

theoretical results were obtained under the assumption that

URAs exist for arbitrary aperture sizes and open fractions.

Therefore, they do not necessarily represent the optimum

open fraction for non{uniformly redundant arrays.

The GS2 and GD algorithms were found to perform bet-

ter when the random arrays they started with had approxi-

mately the optimum open fraction for the given background

level rather than an open fraction of 50 % and when in each

step the probabilities for toggling a one or a zero element

were identical.

In conclusion, our analysis has shown that using aperture

arrays designed by combinatorial search algorithms in con-

junction with a mismatched �lter decoding scheme, coded

aperture imaging systems can be designed whose perfor-

mance is predicted to be only marginally inferior to URA{

based systems. The approach does not impose any restric-

tions with respect to the feasible aperture sizes or open

fractions. In addition, it o�ers the opportunity to easily

incorporate additional constraint into the aperture design.

For example, self{supporting masks can be generated which

do not have isolated closed elements and thus can be real-

ized without the need for an additional support grid.
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