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ABSTRACT

The multilook technique used in synthetic aperture radar
image formation consists in adding incoherently M looks.
As these looks can be obtained in their complex form
and are correlated, the phase and correlation informations
should be taken into account in the speckle reduction pro-
cess. In this paper, we propose an improved multilook tech-
nique based on the use of these two informations. We apply
it on SAR images displaying ship wakes. Our technique con-
sists in enhancing a speci�c texture in the image, using a
set of �lters matched to it, while simultaneously reducing
speckle. The �lters are applied on each look, and the result-
ing images are projected onto a particular basis. The �nal
image is constituted by the quadratic sum of the processed
looks, after their projection on the same geographic plane.
Illustrative results as images comparison and analysis will
show the e�ectiveness of the proposed algorithm.

1. INTRODUCTION

Recently, there has been a great deal of research dedicated
to ship wake detection in synthetic aperture radar (SAR)
images. Some of these detection algorithms use the Radon
transform [1]-[2]. Another algorithm performs the detection
on both ship and ship wakes [3].

Most of the detection algorithms �rst pre-�lters the data
in order to improve the visibility of ship wakes [2]. In
this paper, our objective is to enhance SAR images of ship
wakes, using an improved multilook technique.

In synthetic aperture radar image formation, a common
approach for reducing speckle is constituted by the multi-
look technique. Several improved multilook techniques have
been proposed in the literature [4]-[6]. In [4], the case of a
moving point target is taken into account in the look sum-
mation. Another technique gives each look speci�c sizes
and weights before summation, in order to improve the ra-
diometric resolution [5].

The di�erent looks can be obtained in their complex form.
The idea of using the phase and correlation informations in
the multilook technique has been explored in [6].

We also use the phase and correlation informations. Our
technique consists in building �lters matched to a partic-
ular texture caracterised by its covariance matrix. If we
consider complex looks, the matrix will be composed of co-
e�cients representing the correlation between the in-phase
and quadrature components of each look, and the correla-

tion between the di�erent looks. If we consider the modulus
of the complex looks (case of amplitude looks), the matrix
will be composed of coe�cients representing only the cor-
relation between the di�erent looks.

The covariance matrices of the texture and noise appear
in the signal to noise ratio. The expression of the �lters is
derived by maximizing this ratio. We obtain several �lters
for each look (either in its complex or amplitude form).
The resulting images are then projected onto a basis having
speci�c properties.

Section 2 presents the mathematical formulation of the
process. Its application to the multilook technique is de-
scribed in section 3 for the cases of complex and amplitude
looks. Experimental results are then presented in section 4.

2. MATHEMATICAL FORMULATION

The �lters we use are called stochastic matched �lters. They
are issued of previous work and are described in [7]. A brief
description is given here. The term stochastic is used here
because several observations of the signal (or texture) and
noise are considered.

2.1. Stochastic matched �lters

� Let S be the signal vector corresponding to the texture
to enhance and let N be the vector corresponding to
the noise. Matched �lter technique consists in �nding
a function H in order to maximize the signal to noise
ratio K, expressed by the following relation

K =
HtEfSStgH

HtEfNN tgH
(1)

where ()t represents the transposition.
EfSStg and EfNN t

g are respectively the covariance
matrices of the texture and noise. K can be written
as:

K =
�2s

�2n

Ht�0H

HtR0H
(2)

where �0 and R0 are respectively the normalized co-
variance matrices of the texture and noise. The cal-
culation of the covariance matrices of the texture and
noise are similar, so we will only show the procedure
for the determination of �0 in section 3.



� K is a Rayleigh quotient, so it will be maximized if H
is the eigenvector corresponding to the maximal eigen-
value of the matrix C expressed by

C = R
�1

0
�0: (3)

Suppose that C has T distinct eigenvalues. The cor-
responding eigenvectors are H0;H1; : : : ; HT�1, and we
have:

�0Hi = �iR0Hi:

Taking

Yi = R0Hi (4)

we obtain CtYi = �iYi and Yi constitute an eigenvector
of Ct. So we have

H
t
iR0Hj = 0 if i 6= j:

The eigenvectors Hi are normalized as follows:

H
t
iR0Hi = 1

So the eigenvectors correponding to eigenvalues greater
than 1 can contribute to an improvement of the signal
to noise ratio.

� Let P be the number of eigenvalues greater than 1.
The decomposition of the signal S and the noise N on
the basis constituted by the P vectors Yi leads to the
following expressions:

S = �sS0 = �s

PX
i=1

viYi; (5)

N = �nN0 = �n

PX
i=1

wiYi: (6)

where

vi = H
t
iS0; (7)

wi = H
t
iN0: (8)

vi and wi are random variables having the following
properties:

Efjvij
2

g = �i; Efvivjg = 0; (9)

Efjwij
2

g = 1; Efwiwjg = 0: (10)

Let I be the observed signal. We have

I = S �B

where S represents the signal, B the speckle noise with
mean 1 and � the component wise product.
I can be rewritten as [8]

I = S +N

where N is a signal-dependent noise. I is decomposed
as

I =

PX
i=1

(�svi + �nwi)Yi (11)

The mean square value of the ith component of I is
expressed by

Ef�svi + �nwi)
2

g = �
2

s�i + �
2

n + 2H
t
iHiEfSN

t
g;

so the signal to noise ratio for this component is

K =
�2s�i

�2n + 2Ht
iHiEfSN tg

: (12)

To take into account the e�ect of the term 2EfSN t
g,

we will use the eigenvectors corresponding to some
greatest - but not all - eigenvalues. But given the pre-
ceding model, N can be written as

N = f(S)n

where f(S) represents the signal dependence and n the
zero mean noise. As f(S) and n are independant, we
have

EfSN
t
g = EfSn

t
f(S)tg

= EfSf(S)tgEfntg

= 0

So we can expect that the term EfSN t
g is weak.

2.2. Multidimensional stochastic matched �lters

The extension of the technique to the multidimensional case
is given in [9]. We consider M signals, having respectively
textures denoted S1, S2, : : :, SM , and noise N1, N2, : : :,
NM . They can be decomposed as follows:

Sj =

PX
i=1

viYi;j ; (13)

Nj =

PX
i=1

wiYi;j : (14)

with j 2 f1 : : :Mg and where

vi = H
t
i;1S1 +H

t
i;2S2 + : : :+H

t
i;MSM ;

wi = H
t
i;1N1 +H

t
i;2N2 + : : :+H

t
i;MNM :

Hi;j is the eigenvector corresponding to the ith eigenvalue

and to the jth signal. We have

Yi;j = R0Hi;j :

Considering that theM signals are represented byM looks,
it is possible to apply this decomposition to each look, be-
fore summing them to obtain the �nal image. As we have
complex and amplitude looks, we will obtain di�erent co-
variance matrices for the signal and the noise. For the com-
plex case, the covariance matrix will take into account the
phase and correlation informations. For the amplitude case,
only the correlation between the looks will be used. The
next section presents this improved multilook technique.



3. IMPROVED MULTILOOK TECHNIQUE

3.1. Case of complex looks

� On each complex look, several observations of the tex-
ture and noise are chosen. In our case, texture corre-
sponds to ship wakes. The noise is chosen in homo-
geneous areas. Each observation is constituted by a
(L;L) sub-image. Each sub-image is put under a vec-
tor form (L2,1).

� Let Ik(L
2; 1) and Qk(L

2; 1) be respectively the signal
vectors representing the texture of the in-phase and

quadrature channels of the kth look. A signal vector
S(2�L2�M; 1) is built by concatenating M vectors of
the in-phase and quadrature channels (one vector for a
look). So this signal vector S is expressed by

S = (I1 Q1 I2 Q2 : : : IM QM )t:

Let N be the vector corresponding to the noise. N is
obtained in the same way as S. We have

�
2

s�0 = EfSS
t
g

so we obtain

�
2

s�0 =

2
664

�1;1 �1;2 : : : �1;M
�2;1 �2;2 : : : �2;M
...

...
. ..

...
�M;1 �M;2 : : : �M;M

3
775 (15)

where �k;l is the covariance matrix of the texture be-
longing to complex looks k and l. This covariance ma-
trix is composed of sub-matrices and can be written
as

�k;l =

�
�IkIl �IkQl
�QlIk �QkQl

�
: (16)

So correlations between the in-phase and quadrature
components of each look and correlations between the
looks are represented here.

� Given the form of the signal and noise matrices, each
eigenvector Hj has a length equal to 2 � L2 �M . So
Hj is composed of sub-vectors having a length equal
to L2, that's why we have one �lter for each part of a
complex look.

Only the eigenvectors Hj whose corresponding eigen-
values are su�ciently high are taken into account, so
each complex look is �ltered successively by the cor-
responding sub-vectors to obtain the random variables
vi and wi. Note that in order to �lter a look, each
sub-vector (L2; 1) is put under a bidimensional form
(L;L).

Then the �ltered looks are projected onto the basis
of the Yi vectors. Finally, the resulting images are
projected onto the same geographic plane and then
summed incoherently.

3.2. Case of amplitude looks

Let Xk =
p
I2
k
+Q2

k
be the signal vector (L2; 1) represent-

ing the texture of the kth look. A signal vector S(L2�M; 1)
is built by concatenating M signal vectors corresponding to
M looks. So this signal vector S is expressed by

S = (X1 X2 : : : XM )
t
:

N is obtained in the same way as S. The expression of the
covariance matrix of the texture is given by

�
2

s�0 =

2
664

�X1X1
�X1X2

: : : �X1XM

�X2X1
�X2X2

: : : �X2XM

...
...

. . .
...

�XMX1
�XMX2

: : : �XMXM

3
775 (17)

where �XkXk is the signal covariance matrix of the kth look,
and �XkXl represents the intercorrelations existing between

signals of the kth and lth look.

4. EXPERIMENTAL RESULTS

Illustrative results are presented in this section for an image
displaying surface ship wakes. The conventional multilook
technique is used as a reference for the performance com-
parisons.
A part of a 4-look image obtained from an airborne SAR

of the ONERA (O�ce National d'Etudes et de Recherches
A�erospatiales) is shown on �gure 1. It is a 400 � 400 pixel
image. The resolution is 2.9m in ground range and 2.9m
in azimuth. It displays a ship wake (right hand side of
the image), which represents the texture to enhance. To
obtain this image, four looks have been projected on the
same geographic plane and summed in intensity.
Figure 2 shows the 4-look image obtained with our tech-

nique, using the complex looks. The speckle noise has been
reduced, but the contrast has been degraded. The 4-look
image obtained with our technique, using amplitude looks,
is presented on �gure 3. In this case, speckle has been re-
duced signi�cantly. The wake has been well enhanced and
can be now better distinguished.
The di�erence of results for the two methods may come

from the fact that the correlation existing between the in-
phase and quadrature components of two di�erent looks is
less important than the correlation existing between two
di�erent amplitude looks.

5. CONCLUSION

A multilook technique using the phase and correlation -
or just the correlation - informations existing between the
looks has been presented. It allows to enhance a speci�c
feature in the image while reducing speckle when using am-
plitude looks. E�ectively, preliminary results shows that
it performs better for the case of amplitude looks than for
complex looks. An improvement of this technique will con-
sist in �nding robust noise models instead of choosing it in
homogeneous regions. This can also be done for the texture.
We are currently studying the performance of the technique
on images displaying wakes less visible than those presented
in this paper.



Figure 1. Original 4-look image

Figure 2. Resulting image for the complex case

Figure 3. Resulting image for the amplitude case
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