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ABSTRACT

The wavelet localization technique was recently applied
to the application of Region-of-Interest tomography. It
achieves a signi�cant saving in the required projections if
only a small region of a tomographic image is of interest.
In this paper, we �rstly show that, with the same sampling
requirement, a simple interpolation scheme applied on the
samples can give a result at least as good as that achieved
by using the wavelet localization approach. It means that
we can use a much simple approach to achieve the same
performance. Second, we propose a new sampling scheme
such that the required projections of each angle are fur-
ther reduced in a multiresolution form. With this sampling
scheme, more than 84% of projections are saved to recon-
struct a 32x32 pixels region of a 256x256 pixels image. The
signal-to-error ratio of the reconstructed region-of-interest
is over 50dB as compare with the case of full projection.
Moreover, we also investigate the e�ect of applying the in-
terlaced sampling scheme on the proposed method. It is
seen that a further reduction in the sampling requirement
can be achieved although a slight decrease in signal-to-error
ratio may result.

1. INTRODUCTION

Region-of-Interest (ROI) tomography, which refers to the
techniques used in reconstructing tomographic images lo-
calized to an interested region, has aroused much interest
recently [1, 2, 3, 4]. It suggests that if only a small re-
gion of a tomographic image is of interest, essentially only
the projections localized to this ROI are required for its
reconstruction. It has important consequences to both the
transmission and emission tomography. For transmission
tomography, it implies that less x-ray dose is required to
reconstruct the ROI. For emission tomography, it implies
that a higher resolution ROI can be obtained by placing
more detecting cameras within the support of the ROI.
The study on the Region-of-Interest tomography has been

conducted in di�erent directions[1, 2, 3, 4]. Nevertheless,
it has been shown that the ROI cannot be exactly recon-
structed with only the projections localized to the ROI
[3, 4]. Recent study in this area is then mainly on how
to minimize the projections other than the localized ones.
The exponential sampling approach [4] tries to minimize
the projection in radial direction, whereas the wavelet lo-
calization approach [1, 2] concentrates on reducing the pro-
jections angularly.
In this paper, we �rst make an analysis on the wavelet

localization approach and show that a simple linear inter-
polation on the projections can give a result as good as
that achieved by the wavelet localization approach. Fur-
ther to this work, we propose a new sampling scheme such
that the required projections of each angle are reduced in a
multiresolution form. It is possible due to the observations

that, when the projections of a particular angle are down
sampled into a multiresolution form, the aliasing problem
will not occur or will be negligible for the samples of some
of the resolutions. The reduced projections are then inter-
polated in a multiresolution way. Standard reconstruction
technique is applied on the interpolated projections to ob-
tain a tomographic image. As a result, a more than 84%
saving in the required projections is achieved. The recon-
structed ROI has an over 50dB signal-to-error ratio as com-
pared with that using full projection data set.

2. WAVELET LOCALIZATION OF THE

RADON TRANSFORM

The process of tomographic imaging can be mathematically
modeled by using the Radon transform [5]. The de�nition
of the Radon transform of a function f : R2

! R is shown
as follows:

Pf(~�; t) =

Z
R

f(~x)�(t� ~� � ~x)d~x (1)

Eqn.1 states that Pf (~�; t) is the line integral of f through

~x 2 R2 and perpendicular to ~� . The function f can be re-
covered from the projection using the inverse Radon trans-
form de�ned as in eqn.2.

f(~x) =

Z
S

FPf (~�; ~� � ~x)d~� (2)

where the function F represents the ramp �lter used in the
reconstruction and the outer integration can be considered
as the backprojection. This is the well-known �ltered back-
projection algorithm used in tomographic image reconstruc-
tion. Due to the discontinuity of the transfer function of the
ramp �lter at d.c., the impulse response of the ramp �lter
is never compact. This implies that even if one tries to re-
construct a small part of the function f , the non-compact
characteristic of the ramp �lter requires that all projections
Pf from every angle should be available for the reconstruc-
tion. However, the e�ect due to the discontinuity of the
ramp �lter can be minimized if the function f has zero d.c.
response and several vanishing moments[5]. It is known that
many wavelet functions have these properties. Assume that
we perform the wavelet transform on the projections of each
angle such that the wavelet coe�cients dj;n are obtained on
scale j and translation n at angle � and the scaling coe�-
cient cJ;n are obtained on scale J and translation n at angle
�, eqn.2 can be rewritten as follows:
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�
+
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n
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�
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�
d~� (3)

where  and � are the wavelet function and scaling function,
respectively. The equality of eqn.3 holds because of the



linearity of the ramp �lter F . For those wavelet function
 that has several zero moments, the locality properties
of the wavelets will be preserved after it is convolved with
the ramp �lter F . Hence for those wavelets, we need only
local information to perform the inversion. However, only
the high resolution wavelet function  have enough zero
moments, the others will have increasingly large support,
and so will their �ltered versions. Hence for those wavelets,
we still need to project the whole object even a small region
is of interest. Fortunately, it was shown that [1, 2] for those
wavelets, the wavelet coe�cients dj;n are essentially band-
limited. It enables one to compute them from the nonlocal
data for only a few angles and interpolate the values of these
coe�cients at the other necessary angles. In this way, the
overall sampling requirement is reduced. The procedure of
reconstruction using the wavelet approach [1] is summarized
in an example shown in �g.1a and the required sampling
pattern is shown in �g.1b.

3. REPLACING THE WAVELET

TRANSFORM BY INTERPOLATION

We show in this section that only if the same sampling
pattern as the wavelet approach is used, we can reconstruct
the region-of-interest with a quality at least as good as that
of the wavelet approach by simply interpolating the reduced
projections. This implies that less computation e�ort is
required since we need not perform the wavelet transform.
Without loss of generality, we use the example in �g.1a to
illustrate the idea.
First, let us consider the input requirement of the wavelet

and scaling �lters in �g.1a. It is seen that the wavelet �lter
requires only the local projections of every angle, while the
scaling �lter requires full projections of only every other
angles. As the wavelet function is compact support, it is
obvious that there will not be any negative e�ect to the re-
constructed image if we combine the sampling requirements
of both the wavelet and scaling �lters such that the inputs
to them are the same.
Second, let us further consider the scaling coe�cients gen-

erated by the scaling �lter. It was suggested in [1] that
interpolation should be performed on these scaling coe�-
cients to estimate those unknown coe�cients of the missing
angles. However, it can be easily shown that, due to the
linearity of the wavelet transform, any linear interpolation
performed on the scaling coe�cients of a particular scale
is not necessary if the same interpolation has been done in
the projection domain, that is, before the wavelet trans-
form. For instance, consider the following linear interpola-
tor applied on the scaling or the wavelet coe�cients of any
resolution:

dj;n(�i) =
X
k2S1

X
n0
2Z

Aj(k; n
0)dj;n+n0 (�k) i 2 S2
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X
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0)cJ;n+n0 (�k) i 2 S2 (4)

For a particular resolution j, S1 � Z such that the wavelet
or scaling coe�cients of �i : i 2 S1 is known, while S2 � Z
such that the wavelet coe�cients of �i : i 2 S2 is unknown.
The parameter A 2 R describes the interpolator. Assume
that the wavelet and scaling coe�cients are obtained by
applying the discrete wavelet transform on the projections
as follows:
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where r 2 R; ao; bo 2 R are two constants which de�ne the
sampling lattice of the wavelet transform. Substitute eqn.5
into eqn.4 and rearrange the summations and integrations,
we have
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Eqn.6 shows that the interpolation of the scaling or wavelet
coe�cients can be replaced by performing the same interpo-
lation on some selected projections and then applying the
wavelet transform on the interpolated projections. Based
on the above arguments, �g.1a can be modi�ed as in �g.2
where the blocks WT and IWT can be canceled out. Hence
the �nal proposal is just simply as follows:

1. Obtain the projection with a pattern as in �g.1b;

2. interpolate the missing projection; and

3. perform �ltered backprojection.

The above approach can be extended to the case when a
multi-level wavelet transform is used. Although the above
approach is very simple, the result is surprisingly good.
Figs.3c and 3d show a comparison of using the modi�ed
approach and the original wavelet localization approach to
reconstruct a region-of-interest of 32x32 pixels at the centre
of a 256x256 pixels image. Figs.3a and 3b show the reduced
sinogram used in both approaches and reconstructed image
from full samples respectively. For the modi�ed approach, a
simple linear interpolation is performed on the reduced sino-
gram to estimate the missing projections. Both approaches
achieve a signal-to-error ratio of over 50 dB in reconstruct-
ing the region-of-interest. However the modi�ed approach
does not require to perform the wavelet transform. Further-
more for the region other than the interested one, the qual-
ity of reconstruction using the modi�ed approach is better
than the wavelet localization approach. This result shows
that the sampling pattern is the most crucial factor to re-
construct the region-of-interest. Once a suitable sampling
pattern is used, the subsequent operation can be so simple
that even a linear interpolation would allow a satisfactory
reconstructed image.

4. NEW SAMPLING SCHEME

Indeed, the sampling requirement in �gure 1.b can be fur-
ther reduced by decimating the radial samples of each angle
in a multiresolution form. It is well known that due to the
bowtie support of the Fourier transform of a sinogram, a re-
duction of the radial sampling rate may cause the problem
of aliasing. However, it is observed that the Fourier support
of a sinogram is essentially supported up to 1/2 of the spec-
trum, while the power of the spectrum is concentrated at
the central 1/8 region of the bowtie. Therefore, the aliasing
components that are introduced to the central 1/8 of the
bowtie due to a decimation of the radial samples will not be
signi�cant, unless the decimation rate is higher than 8. Re-
call a multi-level implementation of the wavelet localization
approach, the most detailed part of the reconstructed image
is generated by the highest resolution wavelets. Since the
highest details inside the ROI is of interest, no decimation
is allowed in the radial samples of the highest resolution
wavelet components. However, due to the locality of the
ramped wavelet, we only require local projection samples
for the ROI plus the support of the ramped wavelet �lter.



For the next highest resolution wavelet function, since
only the part that belongs to the lower 1/2 frequency spec-
trum of the image is generated, we can decimate the ra-
dial samples by two without introducing aliasing problem.
However, the spatial support of the next highest resolu-
tion wavelet function is doubled and therefore local projec-
tion samples of ROI plus twice the support of the ramped
wavelet �lter are required.
For the next resolution wavelet function, it is surprising

to observe that the output from this wavelet has very little
e�ect to the quality of the �nal image. It may due to the
following two reasons: 1) The images reconstructed from
the highest two resolution wavelet functions have covered
75% of the Fourier spectrum of the �nal image. In terms
of the magnitude of the spectral power, the output of this
wavelet function is also negligible as compared with that
given by the scaling function. 2) As the resolution of the
wavelet function is decreasing, the lower frequency part of
the image will be generated. During the ramp �ltering, the
low frequency part will be suppressed and hence the out-
put from this wavelet function contributes very little to the
quality of image inside the ROI. Consequently, the output
of this resolution can be excluded from the �nal reconstruc-
tion without signi�cantly a�ecting the reconstructed image
quality.
Finally for the scaling function, since the lowest 1/8 spec-

trum of the image is generated by the scaling function, its
output cannot be ignored. As it is discussed before, since
the magnitude of the signal power in this part is so high,
aliasing components due to the decimation of radial samples
has negligible e�ect to its magnitude, unless the decimation
rate is greater than 8. Hence an input with radial sam-
ples which is decimated by 8 can be applied to the scaling
function without introducing the aliasing problem. Due to
the bandlimited feature of the scaling function as discussed
in section 2, we can also decimate the angular samples by
8 as well. However, since the scaling function is globally
supported, projections need to be performed for the whole
object irrespective to the size and location of the ROI.
Combining all the sampling requirements as stated above,

a new sampling scheme is shown in �gure 5a. The radial
samples are taken in a multiresolution form and the angular
samples are taken as in the wavelet localization approach.
For this sampled sinogram, we may use the wavelet local-
ization approach to reconstruct the ROI. However, as it
is described above that a projection domain interpolation
can perform at least as good as the wavelet localization
approach, hence we propose the following multiresolution
interpolation algorithm in the projection domain,
1. Obtain projection sample as in �gure 5a.

2. Re-sample the sinogram to an MxM sinogram.

3. Interpolate up to 2Mx2M using the framework of 2D
multi-resolution analysis.

4. Superimpose the interpolated sinogram with 2M pro-
jection samples which are localized in ROI plus length
of ramped wavelet �lter.

5. Repeat steps 3 and 4 with doubled M until an NxN
image is obtained.

The outline of the algorithm is shown in �gure 4. The
interpolating �lter we used is the Deslauriers-Dubuc �lter of
order 4 [6], [�2�5; 0; 9 �2�5; 2�1; 9 �2�5; 0;�2�5]. This class
of interpolating �lters are symmetric with most compact
support, they have the properties:

h(w) + h(w+ �) = 1; h(w) = h(�w) (7)

We applied the above algorithm on a sinogram with 256
angles and 256 samples per angle. The sampled sinogram
and the results obtained using the multiresolution inter-
polation can be seen from �gure 5b,5c respectively. The

signal-to-error ratio of the ROI using the multiresolution
interpolation is 64.35dB as compared with the full sample
reconstruction.
Furthermore, we can also apply the interlaced sam-

pling scheme on our proposed multiresolution interpolation
method to further increase the sampling saving. The sam-
pling pattern of the new interlaced ROI sampling scheme-
and the sampled sinogram are shown in �gure 5d and 5e
respectively. We interpolate the interlaced sinogram us-
ing the proposed multiresolution interpolation algorithm as
shown above. The interpolated sinogram is then used to
reconstruct the image using the standard �ltered backpro-
jection algorithm. The result is shown in �gure 5f. As it is
expected that the signal-to-error ratio drops slightly as the
samples required are much less than the previous proposed
approach. Nevertheless, the error in the ROI can hardly be
visually identi�ed.

5. CONCLUSION

In this paper, we have shown that, with the same sam-
pling requirement, a simple interpolation scheme applied on
the reduced projections can give a result at least as good
as that achieved by the wavelet approach for the localiza-
tion of the Radon transform. This implies that the wavelet
transform may not be necessary in the reconstruction pro-
cess, hence the computational complexity can be reduced.
Second, we propose a new sampling scheme such that the
required projections are further reduced by decimating the
required projections of each angle in a multiresolution form.
With this sampling scheme, more than 84% of projections
are saved to reconstruct a 256x256 pixels image with the
region-of-interest located at the centre 32x32 pixels. The
signal-to-error ratio of the reconstructed region-of-interest
is over 50dB as compared with the case of full projection.
Moreover, we also investigate the e�ect of applying the in-
terlaced sampling approach on the proposed method. It is
seen that a further saving in the sampling requirement can
be achieved although a slight decrease in signal-to-error ra-
tio may result.
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Figure 1. One level Wavelet localized tomography.
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Figure 2. Modi�ed ROI reconstruction.
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Figure 3. Results of using di�erent approaches to

reconstruct the ROI.
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Figure 5. Results of using the new sampling scheme.


