
AN EVALUATION OF SAR IMAGE COMPRESSION TECHNIQUES

Fatma A. Sakarya1;2 Dong Wei 3 Serkan Emek1

1Department of Electronics and Communication Engineering, Yildiz Technical University, Istanbul, Turkey
2Space Technologies Department, MRC of the Scienti�c and Technical Research Council of Turkey, Gebze, Kocaeli, Turkey

3Department of Electrical and Computer Engineering, The University of Texas, Austin, TX 78712, USA

ABSTRACT

Transform coding based on the Karhunen-Lo�eve Transform
(KLT), the Discrete Cosine Transform (DCT), and the Dis-
crete Wavelet Transform (DWT) is well-understood for op-
tical images. Transform coding applied to synthetic aper-
ture radar (SAR) data, however, has not been well-studied.
This paper compares the results of compressing SAR im-
ages using KLT, DCT, and DWT coders. We compare
the compression results based on six performance crite-
ria| mean-squared error, mean absolute error, peak sig-
nal-to-noise ratio, energy compaction, transform gain, and
compression ratio.

1. INTRODUCTION

Modern spaceborne synthetic aperture radar (SAR) sys-
tems have onboard hardware that consists of transmitting
and receiving units, an analog-to-digital converter, real-
time data downlink, and a storage facility. One of the
primary constraints in the design and operation of space-
borne SAR systems is the unavailability of a downlink with
a high enough data rate. The data rate of each channel is
proportional to the pulse repetition frequency, the number
of sampled values in each received echo, and the number of
quantization bits in each sample. Reducing the data rate
deteriorates the system performance. Therefore, data com-
pression o�ers a practical solution [1].

Data compression algorithms can be classi�ed as lossless
and lossy. Lossless compression algorithms such as Hu�-
man coding, arithmetic coding, run-length encoding, and
Lempel-Ziv coding [2] are used when exact reconstruction
of the original data set is necessary. Lossy compression
algorithms such as predictive coding, transform/subband
coding, vector quantization, and fractal coding are used for
applications in which some degree of degradation of the data
is tolerable and/or high compression ratio is preferred.

In this paper, several algorithms are applied to SAR im-
ages to form the compression system shown in Figure 1.
The compression system consists of a cascade of a pre�lter,
image transformer, quantizer, and encoder. The pre�lter is
a sigma �lter which removes speckle noise from SAR im-
ages [3]. The transform is the Karhunen Lo�eve Transform
[4, 5], the Discrete Cosine Transform [4, 5], or the Dis-
crete Wavelet Transform [4, 6, 7]. The quantizer is a scalar
quantizer, and the encoder is the Lempel-Ziv algorithm [2],
which is applied for further data reduction. In order to

reconstruct the compressed image, we reverse the order of
the compression steps. We evaluate the performance of the
three transform techniques for compressing SAR images by
comparing the original and compressed images according to
six performance criteria| mean-squared error, mean abso-
lute error, peak signal-to-noise ratio, energy compaction,
transform gain, and compression ratio.

SAR image - pre�lter - transformer

?

bit stream � encoder � quantizer

Figure 1. Block Diagram for Transform Coding

2. STRUCTURE OF SAR IMAGES

Synthetic aperture radar (SAR) systems, which are typi-
cally mounted on aircraft and satellites, transmit and re-
ceive microwaves. The microwaves travel to the earth and
scatter when they bounce o� of objects and the ground.
Di�erent objects and di�erent types of terrain scatter mi-
crowaves di�erently. The amount of scattering (a.k.a.
backscattering) determines the grey-levels (tones) of objects
in the SAR image. For example, water produces a relatively
dark tone since it produces little backscatter towards the
radar, trees give medium tones, and buildings correspond
to light tones. By analyzing the backscattering, it is pos-
sible to characterize surface properties of the earth, such
as chemical composition, vegetation, and ambient tempera-
tures. The resolution of these features is dependent on the
spatial sampling in the SAR image. The target resolution
area (called the resolution cell) must be sampled by at least
2� 2 pixels.
A SAR image can be modeled as a sum of four compo-

nents. The micro-texture, which is the speckle noise, ap-
pears as randomly placed bright spots the same size or a
little larger than the resolution cell. The meso-texture, also
called the scene texture, is the variation of backscatter due
to the material and geometry of the objects. This grainy
texture has an elementary unit covering several resolution
cells and is very important for image interpretation. The
macro-texture refers to variations in radar brightness that
are larger than many resolution cells. It arises from objects
such as roads, geological lineaments, �eld boundaries, and
forest shadows. Homogeneous regions are characterized by
the mean backscattering of homogeneous areas.



Speckle noise is formed during the processing of the radar
returns into a SAR image. Speckle noise masks �ne details
in the SAR image. In some applications, it is desirable to
reduce the inherent speckle noise. There are essentially two
categories of speckle reduction techniques: multi-looking,
which is performed on raw data, and �ltering, which is per-
formed on image data. In multi-looking, we average neigh-
boring pixels incoherently to remove speckle. The number
of pixels averaged is called the number of looks N . If we
average Na pixels in azimuth direction and Nr pixels in
range direction, then the total number of looks becomes
N = NaNr. As an alternative, �ltering can be used, which
acts as a �rst step in segmentation of an image for later clas-
si�cation. Speckle can be removed using �ltering techniques
such as mean �ltering, median �ltering, highpass �ltering,
edge preserving smoothing �ltering, local statistics �ltering,
or sigma �ltering. We tried both mean and sigma �ltering
and concluded that sigma �ltering produced better results.
So, our pre�ltering step is sigma �ltering.

3. TRANSFORM CODING TECHNIQUES

Transform coding has been the most popular technique for
image compression [5]. For a typical transform encoder, a
block of image data is transformed using a unitary trans-
form so that a large fraction of the data's total energy is
packed in relatively few transform coe�cients. The trans-
form coe�cients are quantized and encoded independently.
For simplicity and to reduce computational complexity, sep-
arable transforms are used. In particular, we use three
widely used separable unitary transforms: the Karhunen-

Lo�eve transform, the Discrete Cosine Transform, and the
Discrete Wavelet Transform.
The two-dimensional (2-D) separable unitary transform

of an N �N image X = fx(m;n)gm;n can be written as

y(k; l) =

N�1X
m=0

N�1X
n=0

u(k;m)x(m;n) v(l; n)

for 0 � k; l � N � 1, where Y = fy(k; l)gk;l is called the
transformed image, and

fuk = [u(k; 0); u(k; 1); : : : ; u(k; N � 1)]T gk

and
fvl = [v(l; 0); v(l; 1); : : : ; v(l; N � 1)]T gl

are one-dimensional (1-D) complete orthonormal sets of ba-
sis vectors. The inverse transform is then

x(m;n) =

N�1X
k=0

N�1X
l=0

u
�(k;m) y(k; l) v�(l; n)

for 0 � m;n � N � 1. In matrix notation, the transform
pair becomes

Y = UXV
T and X = U

H
Y V

�
:

3.1. The Karhunen-Lo�eve Transform

If an N �N image x(m;n) is represented by a random �eld
whose autocorrelation function is separable and given by

E[x(m;n)x(m0
; n

0)] = r1(m;m
0)r2(n; n

0)

for 0 � m;n;m0; n0 � N � 1, then the basis vectors of
the Karhunen-Lo�eve transform (KLT) are the orthonormal
eigenfunctions �1(m; k) and �2(n; l) obtained by solving

N�1X
m0=0

r1(m;m
0)�1(m

0
; k) = �1;k�1(m;k)

and
N�1X
n0=0

r2(n; n
0)�2(n

0
; l) = �2;l�2(n; l):

Thus, the 2-D separable KLT is determined by

U = �
H
1 and V = �

�
2

where �1 = f�1(m;k)gm;k and �2 = f�2(n; l)gn;l.
The KLT is signal-dependent and unique. It both decor-

relates the input perfectly and optimizes the repacking of
signal energy.

3.2. The Discrete Cosine Transform

The basis vectors of the 2-D discrete cosine transform
(DCT) are given by [5]

u(k;m) = v(k;m) = a(k) cos
(2m+ 1)k�

2N

where

a(0) =

r
1

N
; a(k) =

r
2

N
; 1 � k � N � 1:

For highly correlated signals, the DCT closely approximates
the KLT and has excellent energy compaction properties.

3.3. The Discrete Wavelet Transform

Figure 2 illustrates a one-level decomposition of an image
X using a 2-D separable discrete wavelet transform (DWT).
The �lters H0, H1, G0, and G1 are 1-D L-tap perfect recon-

struction quadrature mirror �lters (PR-QMFs) [4] satisfying

G0(z) = �H1(�z); G1(z) = H0(�z);

H1(z) = z
1�L

H0(�z
�1);

and
jH0(e

j!)j2 + jH1(e
j!)j2 = 1; 8!:

They are combined with downsampling in both the hor-
izontal (row-wise) and vertical (column-wise) dimensions
to compute an approximate image XLL and three detailed
images, i.e. horizontal sub-image XLH, vertical sub-image
XHL, and diagonal sub-image XHH at each level. Here, the
indices \L" and \H" refer to low and high frequency sub-
band components. The decomposition procedure is as fol-
lows: the input image X is �rst �ltered row-wise with the
�lterH0 to produce a lowpass component and with the �lter
H1 to produce a highpass component. The �ltered outputs
are then downsampled by a factor of two to resample each
�ltered signal component at its Nyquist rate. This does not
cause any loss of information since the �ltered images have
half of the bandwidth of the original one and the aliasing



parts of the two subband components will be eliminated af-
ter reconstruction due to the PR property of the �lter bank.
Both two outputs are then �ltered column-wise to produce
four sub-images: XLL, XLH, XHL, and XHH. Figure 3 is
the system used to reconstruct the decomposed image. It is
just the dual of the system in Figure 2 and after reconstruc-

tion, bX = X, provided that no quantization is performed
on those subband images. Wavelet-based multiresolution
decompositions have been demonstrated as excellent tools
for image coding [6].
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Figure 2. One Level of Forward DWT
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Figure 3. One Level of Inverse DWT

4. LEMPEL-ZIV CODING

We describe the Lempel-Ziv algorithm [2, 8]. for universal
data compression. This algorithm is simple to implement
and and has an asymptotic rate approaching the entropy of
the source. The algorithm is particularly simple and has be-
come popular as the standard algorithm for �le compression
on computers because of its speed and e�ciency.
In the Lempel-Ziv algorithm, the source sequence is se-

quentially parsed into strings that have not appeared so far.
For example, if the string is 1011010100010..., we parse it as
1, 0, 11, 01, 010, 00, 10,... After every comma, we look along
the input sequence until we come to the shortest string that
has not been marked o� before. Since this is the shortest
such string, all its pre�xes must have occurred earlier. In
particular, the string consisting of all but the last bit of this
string must have occurred earlier. We code this phrase by

giving the location of the pre�x and the value of the last
bit.
Let c(n) be the number of phrases in the parsing of the

input n-sequence. We need log c(n) bits to describe the
location of the pre�x to the phrase and 1 bit to describe
the last bit. For example, the code for the above sequence
is (000,1) (000,0) (001,1) (010,1) (100,0) (010,0) (001,0),
where the �rst number of each pair gives index of the pre�x
and the second number gives the last bit of the phrase.
Decoding the coded sequence is straightforward and we can
recover the source sequence without error.
The algorithm performs two passes. The �rst pass parses

the string and calculates c(n), the number of phrases in the
parsed string. We allocate log c(n) bits for the pointers in
the algorithm. The second pass calculates the pointers and
produces the coded string, as given above. The algorithm
allots an equal number of bits to all of the pointers. This is
not necessary, since the range of pointers is smaller at the
initial portion of the string. The algorithm can be modi�ed
so that it requires only one pass over the string and uses
fewer bits for the initial pointers. These modi�cations do
not a�ect the asymptotic e�ciency of the algorithm.

5. PERFORMANCE CRITERIA

In many image processing applications, mean-squared er-
ror is usually used as a performance criterion to compare
the quality of a compressed image to its original version.
Unfortunately, MSE does not su�ciently reect those per-
ceptually signi�cant features of images which are often local
rather than global in nature. A similar situation holds for
SAR data because SAR data will ultimately be interpreted
by a human or machines. Since MSE alone is insu�cient
for measuring and comparing the performance of SAR data
compression algorithms, we evaluate various compression
techniques based on a total of six criteria:

� mean-squared error (MSE)

MSE =
1

N2

N�1X
m=0

N�1X
n=0

(x(m;n)� x̂(m;n))2

where x(m;n) and x̂(m;n) are respectively the original
image and the compressed image of size N � N . It is
well-known that MSE globally measures the average
energy of the error image.

� maximum absolute error (MAE)

MAE = max
0�m;n�N�1

jx(m;n)� x̂(m;n)j

MAE shows the worst-case error occurring in the com-
pressed image.

� peak signal-to-noise ratio (PSNR)

PSNR =

10 log10

�
max

0�m;n�N�1
x(m;n)� min

0�m;n�N�1
x(m;n)

�2

MSE
:



jCj MSE MAE PSNR EC(C) GT (C) CR
(dB) (%) (%)

64 .0000 .0000 1 100.00 .00 1.17
49 .0013 .1282 53.24 80.39 23.45 1.52
36 .0042 .1627 41.07 66.73 43.75 2.08
25 .0078 .2526 35.21 57.48 57.07 2.71
16 .0256 .3178 28.25 50.63 75.00 4.57
4 .0389 .7001 18.65 32.95 93.75 16.61

Table 1. Simulation Results for KLT

� energy compaction (EC)

EC(C) =

P
(m;n)2C

(y(m;n))2PN�1

m=0

PN�1

n=0
(y(m;n))2

where y(m;n) is the transformed image and C denotes
the set of indices of preserved transform coe�cients.
EC(C) measures the amount of energy conserved by
the transform coe�cients given by C, and shows the
e�ciency of the image transform.

� transform gain (GT )

GT (C) =
N2

� jCj

N2
� 100%

where jCj denotes the cardinality of the set C. GT (C)
provides the percentage of the discarded transform co-
e�cients determined by C.

� compression ratio (CR)

CR =
number of bits for x̂(m;n)

number of bits for x(m;n)

CR reects the achieved compression after coding the
transform coe�cients.

6. SIMULATIONS AND CONCLUSION

We have used 8 � 8 blocks in the simulations for the KLT
and the DCT. The autocorrelation function of the 1-D KLT
is estimated using an AR(1) model with a correlation coef-
�cient 0.95 [4]. For the DWT, we use Coiet �lters of 6, 12,
18, and 24 taps [4, pp. 340, Table 5.2], and minimum-phase
binomial QMF of taps 4 and 8 [4, pp. 246, Table 4.2]. The
SAR image data is normalized so that the minimum and
maximum pixel values are 0 and 1, respectively. Table 1,
Table 2, and Table 3 list the simulation results. Based on
these tables, the DWT coder gives the best performance
and achieves compression in both time and frequency. The
subimages which are kept since they conserve at least 10%
of the entire image energy after the decomposition are in
the size of one-fourth of the original image and preserve
60% of the entire image energy. As the number of the pre-
served transform coe�cients of KLT and DCT decreases,
energy conservation and transform gain decrease. Based
on all these observations, the DWT is the most promising
technique for SAR data compression. Since the goal of this
paper is to evaluate three typical transform coders, we do
not intend to design sophisticated codecs, with which the
compression performance can be further improved.

jCj MSE MAE PSNR EC(C) GT (C) CR
(dB) (%) (%)

64 .0000 .0000 1 100.00 .00 1.17
49 .0013 .1290 52.22 80.27 23.45 1.52
36 .0042 .1667 40.68 66.95 43.75 2.05
25 .0080 .2510 34.31 57.93 57.07 2.67
16 .0254 .3170 29.60 49.28 75.00 4.57
4 .0406 .6948 18.09 29.58 93.75 18.25

Table 2. Simulation Results for DCT

�lter MSE MAE PSNR EC(C) GT (C) CR
taps (dB) (%) (%)

4 .0445 .3548 24.35 58.58 75.00 4.56
6 .0436 .3342 26.54 59.72 75.00 4.57
8 .0362 .3218 26.90 60.93 75.00 4.57
12 .0315 .3286 27.34 61.02 75.00 4.58
18 .0289 .3152 28.35 62.20 75.00 4.59
24 .0174 .3002 29.87 63.45 75.00 4.59

Table 3. Simulation Results for DWT
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