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ABSTRACT

We focus on the nonlinear inverse problem of di�rac-
tion tomography. We set the problem as one of estima-
tion within the Bayesian framework and de�ne the solution
as the maximum a posteriori (MAP) estimate which cor-
responds to the global minimum of a multimodal criterion.
The objective of this paper is to present a new deterministic
single site update algorithm specially designed to compute
this solution. The term of �delity to the data, function of
one pixel value, can be written as a second order rational
fraction. Thus, the 1-D MAP criterion can be evaluated �
and minimized � at a very low computational cost. More-
over, for certain MRF models the global minimum can even
be computed explicitly as roots of a polynomial. The pro-
posed algorithm turns these properties to advantage and
moreover performs the updates of intermediate quantities
at a particularly low cost compared to the criterion evalua-
tion. Even if not guaranteed to converge towards the global
minimum, the algorithm has shown itself to give satisfac-
tory practical results.

1. INTRODUCTION

Tomographic imaging with scattering waves such as ultra-
sound or microwave arises in various areas such as medi-
cal imaging, non-destructive testing and geophysical remote
sensing. The purpose is to construct an image representing
the spatial variation of some physical properties of an ob-
ject from a �nite set of �eld data scattered by this object.
The object-data relation is not linear and is given by two
coupled equations. It is linearized customarily using the
Born or Rytov approximations leading to the well known
linear di�raction tomography. These approximations, how-
ever, break down when the object to be reconstructed is too
large or has a too high contrast [1].

We already considered this nonlinear inverse problem
within the Bayesian estimation framework [2]. We de�ned
a regularized solution as the Maximum a posteriori (MAP)
estimate which account for both errors on the measurement
� assumed centered white Gaussian circular � and prior
knowledge on the object � e.g. modeled with Markov ran-
dom �elds. The MAP estimate computation requires the
minimization of a criterion which may have local minima.

This standpoint allowed us to establish links between
some existing methods as algorithms to compute the reg-
ularized solution [2]. Most of these methods are based on

local optimization techniques and can easily get stuck in
local minima in di�cult situations.

We also proposed a deterministic relaxation algorithm
based on the graduated non convexity (GNC) principle in
order to perform this global minimization [3]. Even if there
is no guarantee to reach the global minimum with such an
algorithm, it has given very satisfactory results in these dif-
�cult situations compared to other local minimization tech-
niques. However, its computational cost is very expensive.

Di�erent algorithms in the class of Single Site Updates
Algorithms (SSUA) have been studied in image process-
ing. Deterministic [4] and stochastic [5] ones have given
very interesting results [6]. In this paper, we propose a
deterministic SSUA specially designed to solve the nonlin-
ear di�raction tomography inverse problem. This algorithm
takes bene�t of the particular form of the forward model
(thus of the likelihood function) and possibly of the prior
model, to perform a global 1-D optimization for each pixel.
Of course, it is a sub-optimal minimization technique which
can get stuck in a local minimum, however, it has given sat-
isfactory results for a relative cheap computational cost and
with a high convergence rate.

2. MODELING AND BACKGROUND

The geometrical con�guration of the problem is shown in
Fig. 1. The objective is to reconstruct the 2-D complex per-
mittivity pro�le x(r);r 2 DO of a cylindrical object from
the observation of the scattered �eld y(rj);rj 2 DM mea-
sured at nM sensors for nS distinct wave emission.
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Figure 1: 2-D cylindrical geometrical con�guration.

From Maxwell equations, one can derive coupled equa-
tions relating x and y in an operator form:

y = GM (x;�) ; (1a)

� = �0 + GO (x; �) ; (1b)



where �0 and � are the incident and the total �eld on the
object, and GM, GO are bilinear operators with respect to x

and �, related to the Green function of the homogeneous
background. The classical Born approximation neglects the
scattered �eld on the object in Eq. (1b) � which amounts
to � = �0 � and leads to a linear relation between x and
y. However, this approximation is too restrictive [1], and a
recent challenge is to try to go beyond its limitations. Once
the Eq. (1a�1b) are discretized, we can derive the following
explicit relation between the unknown x 2 CnO and the
data y 2 CnM�nS : y = A(x); with

A(x) = GMX (I �GOX)�1 �
0
;

whereGM,GO are matrices andX is a diagonal matrix with
the components of the vector x as its diagonal elements.
Note that A(x) is nonlinear and of large support.

To take into account the unavoidable uncertainties on
the data, we consider the equation:

y = A(x) +n; (2)

where n stands for the errors on the measurement, modeled
with a circular Gaussian noise n � N(0; �2nI), with a known
�2n and independent of x.

We then de�ne the solution as the MAP estimate of x:

xMAP = arg max
x

p(x jy) = argmin
x

JMAP(x)

with
JMAP(x) = JML(x) + �U(x):

In this criterion, JML (data part) is the criterion to be mini-
mized when the maximum likelihood (ML) estimate is con-
sidered:

JML(x) = ky �A(x)k2;

U is the prior energy1 (regularization term) and � plays the
role of a regularization parameter.

We chose to model the a priori information with Markov
random �elds (MRF) which are classically used in image
processing. The major di�culty of the problem is due to
the non-linearity of the forward model (operator A) which
implies the non-convexity of the data part, so we restricted
ourself to MRFs with convex energy functions.

Even with a convex energy function U , the criterion may
have local minima due to the non-linearity of A. Note that
for easy con�gurations (large number of data and low con-
trast), where there is no local minima, local minimization
techniques may be su�cient. In fact, a great number of
methods are available in this case to compute xMAP with a
lower cost than the direct minimization of JMAP [2]. How-
ever, in di�cult con�gurations, they can get stuck in local
minima and global optimization techniques may be used.

Stochastic algorithms such as SA or MCMC are prac-
tically inextricable because of the large support and com-
putational cost of the operator A. The global deterministic
algorithm proposed in [3] has given satisfactory results but
with a still high computational cost. It is based on lo-
cal minimization of a sequence of criteria of the same form

1Note that x is complex but it real and imaginary parts have
physically distinct meaning. In this paper, we consider energy
functions applied independently to each part, but correlation
could be introduced.

than JMAP, globally approximating JMAP, with a �rst order
descent technique. Note that one iteration of a �rst order
descent technique requires the computation of the gradient
of the criterion and at least one evaluation of the criteria de-
pending on the 1-D minimization strategy (in general more
than 3 evaluations).

3. PROPOSED ALGORITHM

Following the work of [4] for the minimization of convex
MAP criterion in Bayesian X-ray computed tomography,
we propose to minimize this nonconvex criterion updating
a single pixel value, at each iteration, rather than the entire
image.

We show [7] that the criterion JML, function of a pixel2

i can be written as a second order rational fraction3 :

JML(x+ xi) =  +
�1xi + �2x

2

i

�0 + �1xi + �2x
2

i

:

An example of this criterion is illustrated Fig. 2. This im-
portant feature can be taken into account in such a SSUA,
because the criterion evaluation can be made at a very low
computational cost, thus the 1-D minimization could be
very cheap.
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Figure 2: Left: Illustration of the data part of the 1-D
criterion: JML(x + xi) (rational fraction). Right: Illustra-
tion of the 1-D criterion JMAP(x+ xi) for L1 regularization
(piecewise rational fraction).

Moreover, if the energy function U derives from a Marko-
vian model of potential function Vc, only the potentials of
the cliques containing the pixel i are to be changed:

U i(xi)
�

= U(x+ xi) = U(x) +
X

c;i2c

(Vc(x+ xi)�Vc(x)) :

So the criterion Ji(xi)
�

= JMAP(x+ xi) can be evaluated at
a very low computational cost.

Once determined the new value of the pixel i, di�erent
quantities have to be updated to account for this change.
Using the matrix inversion lemma applied on

((I �GOX)�GOX i)
�1

2In fact function of it real or imaginary part.
3In this paper, we respect the following notation: xi value to

add to the current value of pixel i ; 1i = [0; : : : ; 0;1;0; : : : ;0]t

column vector zero everywhere except at the ith line ; xi =

xi1i; ; 11i diagonal matrix zero everywhere except at the ith
line, ith column (value 1) ; Xi = xi11i ; M i column vector
corresponding to the ith column of matrixM ; M i line vector
corresponding to the ith line of matrixM.



which intervenes in A(x + xi); these updates can be per-
formed with a relative low cost. Finally, The sweep of all
the pixels is performed at a cost of the same order as the
gradient of the criterion.

Considering the quantities T = (I �GOX)�1GO of size
nO � nO and R = GMXT of size nM � nO; the algorithm of
Table 1 can be deduced. The number of complex multipli-
cations for one pixel is:

nO
2
+ nO(nM + nS + 1) + 5nM � nS + 4nM + nS:

(1-D global minimization excepted).

Table 1: Proposed algorithm

Initialization (corresponding to x = 0):
T =GO; � = �

0
; R = 0; S = y:

1. Selection of a pixel i.

2. Computation of P and � :

P = (GM

i +Ri)�i,

� = 1
t

i(I �GOX)�1GO

i = T
i
i:

3. Computation of coe�cients �k and �k
For the real part of i: Rfxig

 = SyS �0 = 1

�1 = �2RfSyP g �1 = �2Rf�g

�2 = P yP + 2Rf�P ySg �2 = j�j2

For the imaginary part of i: Ifxig

 = SyS �0 = 1

�1 = 2IfSyPg �1 = 2If�g

�2 = P yP + 2Rf�P ySg �2 = j�j2

4. Computation of the new value for the real part or
the imaginary part of pixel i minimizing Ji(xi):
1-D global minimization.

5. Updates of x = x+ xi1i; � = xi
1��xi

and of matrices S, R, � and T (in this order):

S = S �
�
�R

i + xi(1 + �T
i
i)GM

i
�
�i

R = R +
�
�R

i + xi(1 + �T
i
i)GM

i
�
T i

� = �+ �T
i
�i

T = T + �T
i
T i

4. Iterate on 1. to 5. until convergence.

4. 1-D GLOBAL MINIMIZATION

At each iteration, the proposed algorithm requires the min-
imization of J i with respect to the real or imaginary part
of xi: If we consider potential functions V(t) applying on
the transition between two neighboor pixels; then, if the
derivative of V is a rational fraction, the derivative of the
criterion Ji(xi) w.r.t. xi is a rational fraction too. Thus, its
local extrema correspond to the roots of polynomials and
the global minimum can be computed easily.

Among the potential functions proposed in the litera-
ture, some of them verify this property. In particular, the
well known L2 and L1 cases (resp. V(t) = t2 and V(t) = jtj)

but also the case of the Huber function: VT (t) =
jtj

2

T2 if jtj �

T; 2
jtj

T
� 1 if jtj > T:

4.1. L1 regularisation

The case of L1 regularization is particularly interesting. In-
deed, in this case, the derivative of U w.r.t. xi is piecewise
constant, thus Ji is a piecewise rational fraction of the third
order for the numerator and the second for the denominator.
An illustration of this piecewise fraction is given on Fig. 2
(for coe�cients obtained from simulations). The derivative
of Ji is a piecewise rational fraction of the fourth order, thus
the local minima of Ji corresponds to the roots of fourth
order polynomials. Its global minimum can be obtained
explicitly with a low computational cost:

1. The whole IR has to be divided in n+1 zones Zk (for
an order n neighborhood) depending on the positivity
of jxi � xjj for each j neighbor of i.

2. In each zone Zk, the values xi canceling the derivative
of Ji are computed. They correspond to the roots
of a fourth order polynomial and can be calculated
explicitly. Only the roots which belong to the zone
Zk are selected.

3. The criterion is evaluated at the value of the selected
roots as well as at the value of the neighbors of i.
The value minimizing Ji corresponds to its global
minimum.

4.2. L2 regularisation

The L2 regularization is usually easier to take into account
than L1 regularization. For the proposed algorithm, it is
the opposite as the L2 regularisation leads to a �fth degree
rational fraction for the derivative of Ji: Thus the compu-
tation of the minimum (root of a �fth degree polynomial)
cannot be done explicitly and has to be computed numeri-
cally.

4.3. Huber potential function

The Huber function, as other convex potential functions,
has an L2 behavior near the origin and an L1 behavior for
large transition values, thus chosing such a model corre-
sponds to a compromise between the L1 and L2 regulariza-
tions. This potential function can be used in the proposed
algorithm as its derivative is piecewise polynomial (of de-
gree zero or one). It leads to compute the root of a �fth
degree piecewise polynomial de�ned over 3n+1 zones for a
size n neighborhood.

4.4. Other potential functions

The proposed algorithm is not restricted to potential func-
tions whose derivatives are piecewise rational fractions; this
property simply transforms the 1-D global optimization prob-
lem into a problem of polynomials roots calculation. Any
other function can be taken into account but then requires
implementation of an 1-D global optimization technique.



Such an algorithm remains interesting as the 1-D criterion
is evaluated with a very low computational cost.

4.5. Additional constraints

Note that it is particularily easy to account for constraints
on the values of the pixels in single site update algorithms
while it is very di�cult for global update algorithms. In
our case, prior information such as x(i) 2 [ai; bi] (or the
positivity of the pixels), can be incorporated easily in the
1-D global optimisation technique.

5. SIMULATION RESULTS

The obtained solution at convergence corresponds to a global
minimum of JMAP with respect to each pixel, and to a local
minimum of JMAP if the potential fuction is di�erentiable.
Nevertheless, there is no guarantee for this solution to cor-
respond to the global minimum of JMAP and the solution
depends on the initialization and on the chosen sweep or-
der of the pixels.4 In spite of this property, the algorithm
has given very satisfactory simulation results.

First, we compare the solution given by the proposed
algorithm and by the conjugate gradient (CG) for an easy
con�guration. Both algorithms converge towards the same
solution as the criterion seems to be unimodal, but the pro-
posed SSUA converges faster than the CG. As an illustra-
tion, we represent in Fig. 3 the real part of the original
object and of the solution given by the proposed and the
CG algorithms after 10 iterations. As noticed and justi�ed
in [4] in a linear case, a local update strategy allows to re-
cover faster the high frequencies of an object than a global
update strategy (CG) which is noticeable in these results.
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Figure 3: Original object (left) and solution given by the
conjugate gradient (center) and by the proposed algorithm
(left) after 10 iterations (L1:1 regularization). The object
has a relative contrast of 2, 21 � 21 pixels and 8 � 8 data
are available with SNR = 20dB.

Then, we show some results in a more di�cult con�gu-
ration for which the CG get stuck in a local minimum. We
represent in Fig. 4 the criterion value JMAP(xn) and the rel-

ative reconstruction error 2(xn)
�

=
kx�x�k
kx�k : One can notice

that the algorithm seems to escape from a local minimum
of the criterion JMAP around the twentieth iteration.

6. CONCLUSION

We propose a deterministic single site update algorithm
to compute a regularized solution to the nonlinear inverse

4We have noticed that a checkerboard sweeping strategy is
preferable to usual raster scanning, as its seems to avoid more
local minima.
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Figure 4: Value of the criterion (left), of the relative recon-
struction error (center) and solution (right) given by the
proposed SSUA. (L1;1 regularisation, positivity constraint)
The object has a relative contrast of 5.5, 11� 11 pixels and
8� 8 data are available with SNR = 20dB.

problem of di�raction tomography.
For each pixel, the 1-D global minimization can be per-

formed at a very low computational cost, particularly for
certain potential functions. Moreover, the updates between
each minimization do not need to compute the forward
problem which is computationally very expensive.

The algorithm has been shown to be more e�cient than
local optimization techniques such as the conjugate gradi-
ent, when the criterion does not have local minima. More-
over, it is able to reach the global minimum in more di�cult
con�gurations.
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