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ABSTRACT

The paper considers the problem of phase unwrapping which
means generating absolute phase values from noisy, modulo-2π
mapped phase ‘observations’. Phase unwrapping is the central
key element in any kind of interferometric application. Nearly all
known phase unwrapping techniques try to unwrap the mapped
phases by a sequence of differentiating, taking the principal
value of the discrete derivative and integrating again. This
procedure, conceptually appealing as it may appear, however,
yields strongly biased phase derivatives and thus strongly biased
phase estimates. It can be shown mathematically, that computing
the discrete derivative of noisy modulo-2π mapped phase yields
estimates of the unambiguous discrete derivative, which are
always biased towards lower absolute values. The bias clearly
depends on the phase slope itself as well as on the coherence or
on the signal to noise ratio (SNR), respectively. Considering the
practical application of Synthetic Aperture Radar Interferometry,
the paper presents the theoretical analysis, and gives some
numerical results.

1. INTRODUCTION

The determination of the unambiguous phase from noisy
observations of complex angularly modulated signals is an
unsolved problem in general, especially if phase and amplitude
are mutually uncorrelated or even independent. This is clearly
the case for a complex SAR interferogram. In terms of signal
theory a SAR interferogram can be considered as a complex,
simultaneously amplitude and phase modulated 2D signal with
non Gaussian error statistics. Usually the wanted interferometric
phase is obtained by a simple tan-1 operation, delivering phase
values within the principal interval (e.g. -π, π). These phases
contain all the information needed for the generation of digital
terrain elevation maps of observed areas but they do not contain
that information in an unambiguous way, as any absolute phase
offset (an integer multiple of 2π) is lost. Furthermore they are
subject to phase noise coming from the superimposed amplitude
noise in real and imaginary part of the InSAR image. In terms of
signal theory phase unwrapping is simply a two dimensional
phase demodulation problem. Nearly all classical approaches to
phase unwrapping, known from optical interferometry apply a
sequence of differentiating, taking the principal value of the
discrete derivative and integrating again along specified paths.
The paper will show that all these approaches yield biased
estimates, especially when combined with Linear Least Squares
techniques which are commonly used to reduce stochastic phase
errors.

2. THEORY AND CONCEPTS

Let the observed phase be related to the unambiguous phase by:

[ ]y k k e kϕ ϕ π
ϕ( ) ( ) ~ ( )= +

2
(1.)

where ϕ(k) is the true unambiguous phase at time or point k,
~ ( )e kϕ  is the true phase error and the bracket indicates the

operation of taking the principal value of the argument phase
term in a way that:
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As a result, the observed phase always lies within the base inter-
val (-π,π]. Forming the discrete derivative yields:
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Here we have only used the fact that adding any integer multiple
of 2π does not change the result of a modulo-2π operation. With
the same reasoning we further obtain:
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e k e kϕ ϕ( ) ( )+ −1  are the phase errors at points k and k+1,

respectively, mapped into the base interval (-π,π]. The stochastic
properties of these errors, namely distribution density and
second order moments are known. Now again using the same
identities in equation 4 as before we can further write:
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δϕ ( )k  is the true discrete phase derivative, the modulus of

which is supposed to be always smaller than π. Equation 5
clearly expresses the error which we commit when forming the
discrete derivative from modulo-2π mapped noisy data. If there
were no phase error present the result would be totally correct,
but since phase errors always occur in normal interferograms, we
commit a systematic error when ‘differentiating’ modulo-2π
mapped data. In the next step we will investigate the stochastic
features of the phase error difference in the second term of
equation 5. Then we will evaluate, how a modulo operation,
which occurs twice, changes the known distribution density of a



random variable. Let us introduce the non-mapped phase error
difference variable by:

~
( ) ( ) ( )δ ϕ ϕe k e k e k= + −1 (6.)

Obviously the numerical values can vary between ±2π, as any of
the terms in the difference can vary between ±π. Assuming that
the phase errors of two subsequent phase samples are
independent random variables the resulting distribution density
of the phase difference is the correlation product of the
individual phase distribution densities. Thus we have:
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Conceptually equation 7 can be solved since the individual terms
are known from [1,2]. The phase error distribution density, given
there, is:
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The phase error difference 
~

( )δ e k given in equation 6 and

showing values between ±2π is now mapped into the base
interval between ±π. The functional mapping is:
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The distribution density of the ±π-mapped phase error difference
δ e k( ) can be obtained by writing:
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Using the correct functional mapping in each of the intervals and
exploiting that the conditional probability density of a
functionally mapped variable only consists of a Dirac impulse
we have:
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Now we return to the sum in equation 5 and introduce the non-
mapped discrete difference by:
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Further introducing the conditional density of 
~

( )∆ k  conditioned

on the fact that the true phase derivative takes on the value δ 0

we may write:
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In the last equality we have used the fact that the ±π-mapped
phase error difference δ e k( )  is independent of the true phase

derivative δϕ ( )k . Substituting equation 11 into 13 we obtain:
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This is the conditional distribution density of 
~

( )∆ k  conditioned

on the fact that the true phase derivative takes on the value δ 0 .

This variable is ±π-mapped again to yield ∆ϕ ( )k  (Equ. 5). Now

utilizing the same arguments and reasoning as before, we get the
final result for the conditional density of the ‘mapped’ phase
derivative, conditioned on the fact that the true phase derivative
takes on the value δ 0 :
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where the short hand expressionf0( )ξ  has been utilized for

convenience. This expression is the 2π-cutout of the sum of
three shifted replicas of the distribution density:
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We now introduce the bias error of the ‘mapped’ derivative:
e k k k( ) ( ) ( )= −∆ϕ ϕδ  and evaluate the conditional density of

this error conditioned on δ δϕ ( )k = 0 . From probability theory

we know that:
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Exploiting the identity of equ. 15 in equation 17 we obtain the
wanted conditional density:
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with f0( )ξ  given in equation 16. Figure 1 demonstrates the

meaning of equation 18 for an arbitrary density:
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Figure 1: The generation of the conditional error distribution

With the help of figure 1 the conditional expectation
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calculated:
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1. As our first case we will consider the interval − < ≤π δ 0 0.

For this case we can subdivide the integral into the following
two parts:
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2. The second case is given by: 0 0< ≤δ π . Here the following

sequence of operations is valid:
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Since f f0 0( ) ( )ξ ξ= −  is an even density function, symmetric

around zero, the corresponding distribution F0( )ξ  will show

the following symmetry:F F0 01( ) ( )− = −ξ ξ . From inspecting

equations 20 and 21, respectively, we conclude that the
conditional mean of the bias error is an odd function with
respect to the nominal value δ 0 :

{ } { }E e k k E e k k( ) / ( ) ( ) / ( )δ δ δ δϕ ϕ= − = − =0 0 (22.)

From equations 20, 21 we conclude that knowing F0(ξ) is
completely sufficient for determining the bias error. If we
furthermore restrict us to the case of phase slopes between ±π,
we can utilize equation 16 and write:
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where in the last equality we have only used the usual symmetry
properties. For convenience we will furtheron restrict ourselves
to the case of positive slopes so that we can substitute equation
23 into equation 21 and write:
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The distribution density is periodic with respect to 4π. This
means that we can expand it in a Fourier series:
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Substituting equation 25 into 24 we readily obtain:
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where the Fourier coefficients are given by:
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Now we approximately calculate dm by FFT-techniques by:
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The continuous density f
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( )δ ξ  is, as indicated by equation 7,

the continuous correlation. The discrete equivalent employing
the sampled versions of the individual densities is given by:
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Realizing this discrete convolution as a cyclic convolution we
carry over to FFT-techniques by writing:
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The result of equation 31 can be easily obtained in the frequency
domain by letting:
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where the Fourier transforms are calculated by::
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Then the rule for approximately evaluating the bias is:
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Finally we obtain the solution for negative phase slopes by
equation 22. Equations 34 and 22 provide the final result and
form the basic framework for evaluating the bias error depending
on the phase slope itself as well as on the form of the densities.
These densities depend on the degree of coherence or on the
SNR of the interferogram (the quality of the fringes). In the
following we will give some quantitative results. We will assume
identical distribution densities for two successive points. Figure
2 shows the outcoming bias over the true phase slope evaluated
for different degrees of coherence. It is clearly visible that the
maximum allowed phase slope that may be estimated with
negligible bias strongly depends on the coherence. If the
coherence is one, there is no phase slope bias as long as the
phase slope is less than π. The other extreme is a coherence of
0.1. Here the slope bias is considerable even for small lopes.

γ = 0 1.

γ = 1 0.
γ = 0 9.

γ = 0 8.

γ = 0 7.

γ = 0 6.

γ = 0 5.

Figure 2: Bias Error over Phase Slope

3.0 CONCLUSIONS: HOW TO SOLVE THE PROBLEM?

Do not apply any filtering to the phase slope!
Any filter operation will produce an estimate which is ‘nearer’ to
the conditional mean, which is not identical with the true phase
slope. If any filtering is to be applied it should be applied to
complex data rather than to the phases or phase slopes.
Correct the bias by subtracting it!
With the results given in equation 34 it should be possible to
eliminate the bias by simply subtracting it. The bias estimation
of equation 34 is a keypoint to maintain Linear Least Squares
phase unwrapping approaches.
Use unbiased estimators!
Clearly the best solution to a problem is an approach which
prevents the problem from arising. This can be achieved by
applying unbiased phase slope estimators. All these estimators
share the common property that they operate on complex data
rather than on the phases. A very reasonable approach would be
to use an Extended Kalman Filter which does not explicitly
differentiate any mapped phases [2,3]. Recently a combination
of local slope estimation and Kalman filtering techniques has
been proposed [4,5]. This combination yields unbiased and
nearly perfectly noisefree unwrapped phases down to coherence
values of 0.3 without any prefiltering!
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