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ABSTRACT

We address the problem of parallel beam tomographic re-
construction when the angles at which the projections are
taken are unkown. The problem arises in medical imaging
owing to patient motion, and in imaging of viruses from a
single projection of many identical units at random orienta-
tions. We determine conditions for unique identi�ability of
the angles from the projection data alone, and derive bounds
on the variance of estimators of those angles in the presence
of noise. Finally, we present a maximum likelihood estima-
tor, along with a heuristic initialization procedure. Numeri-
cal simulations on a test phantom show excellent agreement
with the bounds, and nearly perfect reconstructions at mod-
erate noise levels.

1. INTRODUCTION

Much of the current research in tomography has focused
on the problem of estimating an object from a �nite collec-
tion of its line integral projections. It is generally assumed
in such developments that the angles at which the projec-
tions are taken are known exactly. Yet there are instances
of tomographic imaging in which perfect knowledge of the
object's orientation is unobtainable. In medical imaging,
for example, involuntary motion of the patient can result in
uncertainty as to the data collection angles. The problem of
reconstructing 3-D models of viruses from a single projec-
tion of many identical units at random orientations is an-
other example in which the assumption of known orientation
fails. In this paper, we examine the problem of determining
the collection angles from the projections themselves. We
derive conditions under which the angles can be uniquely re-
covered, and bounds on the variance of estimators of those
angles in the presence of noise. Finally, we present some
simulations, demonstrating the feasibility of the solution.

2. PROBLEM FORMULATION

For the purposes of this discussion, let us de�ne the Radon
transform operator parameterized by a vector � 2 
 ,

[0; �]P of angles as R� : L2(D
2 ) ! fL2(D )gP , where D 2

is the disk of unit radius in the plane, and D is the interval
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[�1; 1]. The space fL2(D )gP is the P -wise cartesian prod-
uct of L2(D ) with itself. Elements of this space are known
as sinugrams, and are composed of P functions in L2(D )
corresponding to the collection of all line integrals through
an object in the direction perpendicular to �i:

R�f(s; i) =
Z

f(s cos �i � t sin �i; s sin �i + t cos �i) dt (1)

Our goal is to determine the parameter �, which de�nes the
collection angles, from the noisy sinugram. Speci�cally, we
wish to determine � when the quantity measured is

ĝ , g + � = R�f + � (2)

where � is additive white noise in each projection, and f is
the unknown object being imaged. We also assume that the
noise is uncorrelated across projections. Once the angles
have been determined, standard reconstruction techniques
can be applied to the projections to estimate f . To avoid
trivial degeneracies, we assume that the acquisition angles
are all distinct, i.e, that �i 6= �j for i 6= j.

3. EXISTENCE AND UNIQUENESS

Our primary tools in exploring the identi�ability of the an-
gles are the Helgasson-Ludwig (HL) consistency conditions,
which characterize elements in the range space of R� in
terms of their geometric moments and � [1]. Given a sin-
ugram g 2 fL2(D )gP , the parameterized operator Mk :
fL2(D )gP ! RP returns the kth geometric moment of each
projection as a vector in RP for k � 0:

Mkg(i) =

r
2k + 1

2

Z
D

s
k
g(s; i) ds i = 1; : : : ; P: (3)

We will also need moments of the object f 2 L2(D
2 ) being

imaged. These moments are generated by a family of linear
operators Gk : L2(D

2 ) ! Rk+1 , which for a given k � 0,
return all geometric moments of f of total order k:

Gkf(i) =
ZZ
D2

x
i�1

y
k�i+1

f(x; y)dx dy i = 1; : : : ; k + 1:

(4)

The following is a necessary form of the HL conditions,
specialized to parallel beam geometry, and with the depen-
dency on � and the moments of f made explicit:



Theorem 1 (Helgasson-Ludwig) If g = R�f for some
� 2 
, f 2 L2(D

2 ), then for k � 0, i = 1; : : : ; P

Mkg(i) =

r
2k + 1

2

kX
j=0

 
k

j

!
Gkf(j + 1) cos

j
�i sin

k�j
�i:

(5)

Hence, the HL conditions, in the absence of a priori in-
formation on f (except, perhaps, that it lies in L2(D

2 )),
yield an explicit relationship between the object moments,
the collection angles �, and the measurable projection mo-
ments. We outline conditions for unique determination of �
and the object moments by examining the solutions to (5)
for multiple k, where the object moments and the collection
angles are treated as unknowns.

Two trivial types of non-uniqueness arise immediately
from the formulation of problem. The �rst type results from
a lack of an absolute frame of reference; for a given image,
any rotation of the image produces the same sinugram if the
collection angles are similarly rotated. Thus, we can deter-
mine the angles of data collection to within a rotation only.
The second type of indeterminacy results from re
ecting all
angles about any one projection. For example, if we esti-
mate �̂ = ��, we still get a consistent sinugram, but with
the object similarly re
ected. We must therefore extend our
notion of \unique solution" to include these types of inde-
terminacies. For any set of collection angles, we de�ne an
equivalence class of solutions:

S (�) = f� 2 
 j [�+ c]� = ��; c 2 Rg (6)

where [�]� denotes modulo �.

Consider now the problem of determining the angles
from projection moments of orderm through n, to which we
refer as an (m;n) method. An (m;n) method attempts to
jointly solve the system of n�m+1 HL equations for order
k = m; : : : ; n, where the unknowns are the P projection
angles and the object moments of total order m through n.
With the equivalence class de�ned as above, we have:

Theorem 2 (Necessary Condition [2]) A unique solu-
tion to within an equivalence class for an (m;n) method
exists only if

P � (m+ n+ 2)(n�m+ 1)

2(n�m)
n > m > 0: (7)

Theorem 3 (Su�cient Conditions for (1; 2) [2]) If
P > 8, kM2(g)k 6= 0, kM1(g)k 6= 0, and @� 2 R such that
M2g(i) = �M1g(i)

2 for all i, then there exists a unique so-
lution to within an equivalence class for the (1; 2) equations.

Theorem 4 (Su�cient Conditions for (2; 3) [2]) If
P > 24, kM3(g)k 6= 0, kM2(g)k 6= 0, and @�; !1; !2 2 R

such that

G2f = �[!21 ; !1!2; !
2
2 ]
T (8)

then there exists a unique solution to within an equivalence
class for the (2; 3) equations.

The conditions on the moments are degeneracy condi-
tions that will be satis�ed for generic images. Since both
Theorem 3 and Theorem 4 relate to second order moment
information, a candidate object can be tested for these de-
generacies by replacing it with an ellipse that matches its
�rst and second moments. Theorem 3 states that unique-
ness of the (1; 2) method breaks down when the line through
the origin and the center of the ellipse is colinear with ei-
ther the major or minor ellipse axis. Theorem 4 states that
uniqueness of the (2; 3) method breaks down when the im-
age degenerates to a line distribution (i.e., it is completely
correlated in some direction). Uniqueness of solutions to
the (2; 3) method implies that even if the �rst moment in-
formation has been lost (e.g. in the process of aligning the
projections), the angles can still be recovered to within a
rotation and/or re
ection.

4. PERFORMANCE BOUNDS -
MOMENT-BASED METHODS

We derive bounds on the performance of estimators that
jointly estimate the projection angles and the object mo-
ments, in the presence of zero mean additive white Gaussian
noise in the projections.

The measured moments become Gaussian random vari-
ables:

�̂k(i) =Mkĝ(i) =Mkg(i) +Mk�(i): (9)

Under the assumption that the noise is uncorrelated be-
tween projections, and has power spectral density N0 the
following properties then result:

E f�̂k(i)g = Mkg(i) (10)

var(�̂k) = N0 (11)

cov(�̂k(i); �̂l(j)) = 0 i 6= j (12)

cov(�̂k(i); �̂l(i)) , �kl (13)

=

(
N0

p
(2k+1)(2l+1)

k+l+1
k + l+ 1 odd

0 else:

Consider now the estimation of the object moments of
total order m through n, jointly with the projection angles.
These unknowns can be concatenated into a vector:

x =
h
GmfT ; Gm+1f

T
; � � � ;GnfT �T

iT
: (14)

Since the number of object moments to be determined is
1
2
(n�m+1)(n+m+2), �(m;n), x is a vector in R�(m;n)+P .

The measurements are the noisy moments of the projec-
tions, and are stacked by order:

h(x) =
h
�̂
T
m; �̂

T
m+1; � � � ; �̂Tn

iT
(15)

such that for each x, h(x) 2 R(n�m+1)P . The Fischer infor-
mation matrix can then be written as HK�1HT where H
is an �(m;n) +P � (n�m+1)P matrix with the following



structure:

H = rxhT (x) =

2
6666664

Tm 0 � � � 0

0 Tm+1

. . .
...

...
. . .

. . .
...

0 � � � 0 T n

Dm Dm+1 � � � Dn

3
7777775

(16)

where T i is a matrix of size i+1�P , and the jth row of T i

is
q

2i+1
2

�
i

j�1

�
cosj�1 � sini�j+1 � for j = 1; : : : ; i + 1. The

diagonal matrixDi is size P�P , and the diagonal elements
are

(Di)l;l =

r
2i+ 1

2

iX
j=0

 
i

j

!
Gif(j + 1)[(i� j) cosj+1 �l �

sini�j�1 �l � j cosj�1 �l sin
i�j+1

�l]:

(17)

Due to the nature of the noise model proposed, the inverse
noise covariance matrix K can be written as Q�1 
 IP ,
where IP is the P � P identity matrix, and (Q)i;j = �ij
de�ned in (14).

The presence of the rotational uncertainty in the an-
gles implies that the Fischer information matrix will have
at most rank (m � n)P . This can be handled by setting
�1 = 0, and thus �xing the reference frame. The row and
column of the FIM corresponding to �1 can then be deleted.
Cram�er-Rao bounds on the variance of unbiased estimators
can then be computed for any given scenario de�ned by ob-
ject moments and the collection angles.

An important point to note is the behavior of the FIM
when n � P . In such a case, uniqueness of the object mo-
ment estimates breaks down since there are more unknown
object moments of total order n, than equations (one equa-
tion for each of the P projections). Furthermore, we can
show the following upper bound on the number of moments
useful in estimating �:

Theorem 5 [2] No moment-based estimator of � can im-
prove by the addition of the kth moment equations for k �
P .

5. SIMULATIONS

It is not the intent of this discussion to provide optimal
algorithms for the angle estimation problem, but rather to
demonstrate feasibility using a phantom and the maximum
likelihood estimate of the angles. The form of the MLE used
is most easily derived by writing the HL equations in matrix
form:

y = A(�)s+ n (18)

where y = [MT
mg;MT

m+1g; : : : ;MT
ng]

T 2 R(n�m+1)P , s =

[GTmf;GTm+1f; : : : ;GTn f ]T 2 R�(m;n) , and A(�) is a suitably
de�ned matrix function of �. With the geometric moment
formulation, recall that the noise vector n is not white. To
diagonalize the noise covariance, we apply a simple linear

whitening transformation, henceforth implicit in the nota-
tion. Minimizing (18) over s for �xed � yields

ŝ = A(�)
y
y; (19)

which upon substitution yields the following non-linear least
squares problem:

�̂ = argmin
�

kPR(A(�))?yk2: (20)

The phantom is composed of ten disks of di�erent ra-
dius and uniform density shown in Figure 3a. Cram�er-Rao
bounds on the performance of (1; k) methods for a number
of di�erent k are plotted in Figure 1, for 75 random angles
chosen to yield approximately uniform coverage of [0; �).
The noise intensity N0 was �30dB. To demonstrate that
these bounds are at least locally accurate, we approximate
the MLE via a pseudo-newton type descent algorithm ap-
plied to (20) for a variety of noise levels and k. Figure 2
depicts the results of the Monte Carlo runs, averaged over
100 noise realizations per data point, and with a �xed ini-
tial guess chosen close to the global minimum. Even at ex-
tremely high noise levels, the MLE does quite well, relative
to the Cram�er-Rao bounds.

Although informative, this performace relies on �nding
an initial guess close to the global minimum. To demon-
strate that good initial guesses can be found for N0 �
�25dB, we outline the following heuristic algorithm [2], de-
signed for full angle tomographic imaging problems with a
reasonably large number of projections.

1. Identify two projections with smallest and largest j�̂1j
and assign these projections to 0 and 90 degrees.

2. Solve the �rst order moment equation to determine
the two candidate angles for each of the remaining
projections, and decide which candidate is correct us-
ing the second moment information.

Empirically, this algorithm works well for N0 � �25dB.
Once the initial guess is generated, the MLE is approxi-
mated by the BFGS pseudo-newton method (see, e.g. [3])
initialized with the output of this hueristic algorithm.

This approach to calculating the MLE was tested on
phantom of Figure 3, at the same set of 75 angles used in
the Cram�er-Rao bound studies. The algorithm was tested at
N0 = �30dB, and for this phantom, also works for slightly
higher noise levels. Noiseless and noisey �ltered back pro-
jections (FBP) at the correct angles are depicted in Fig-
ures 3a and 3b respectively. If the angles are assumed to
be uniformly spaced and ordered in increasing angle, the re-
construction is useless, as evidenced by Figure 3f. Such an
assumption may be a valid starting point in the case that the
projections are collected sequentially and the uncertainty in
the angles is small. For the randomly ordered angles used
in this experiment, however, such an assumption is clearly
unjusti�ed.

To isolate the e�ects of noise in the projections from
the e�ects of uncertainties in the angles, the FBP recon-
structions at the initial guess angles (Figure 3e), and the
MLE angles (Figure 3c) are done with the noiseless pro-
jections (but with angles estimated from the noisy data).
The distortions present in Figure 3e are then clearly visible,



while the MLE yields a reconstruction that is almost indis-
tinguishable from Figure 3a. For the sake of comparison,
the FBP reconstruction with the actual noisy projections
used to estimate the angles is depicted in Figure 3d.

6. CONCLUSION

We have examined the problem of tomographic reconstruc-
tion in the case of unknown angles. Except under certain de-
generate conditions, the angles can be determined to within
a rotation and/or re
ection given enough projections. Fur-
thermore, bounds on the variance of moment-based angle
estimates can be computed, and do not improve when mo-
ments of order greater than P , the number of projections,
are added. Simulations with a disk phantom demonstrate
that the bounds are accurate, and can be approached by the
MLE for su�ciently good initial guesses. However, global
analytical bounds on estimator performance would be more
generally useful. We have presented a hueristic initializa-
tion algorithm which works well under certain conditions
(i.e. a reasonably large number of angles, and low noise
levels) merely to demonstrate feasibility. Future work will
focus on e�cient and global methods for estimation.
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Figure 1: Cram�er-Rao bounds for the disk phantom at N0 =
�30dB for 75 angles (the symbols mark the angles used in
the calculations)
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Figure 2: Monte Carlo simulations of the MLE for (1; k)
methods.
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Figure 3: (a) FBP of noiseless projections at correct angles.
(b) FBP of noisy projections at correct angles with N0 =
�30dB. (c) FBP of noiseless projections at MLE angles.
(d) FBP of noisy projections at MLE angles. (e) FBP of
noiseless projections at initial guess angles (generated by
hueristic algorithm). (f) FBP of noiseless projections where
angles are assumed correctly ordered and uniformly spaced.


