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ABSTRACT

This paper presents a method for volumetric reconstruction
from Helical Computerized Tomography (H-CT) data which are
collected with a fan beam source. An interpretation of the H-
CT data in terms of the Axial Computerized Tomography (A-
CT) data is provided. This analysis indicates that the H-CT

data for positive and negative detector angles can be combined
to form periodically nonuniform hexagonal samples of the A-CT

data. A Fourier-based method to reconstruct the A-CT data
from this form of data coverage is presented. The target function

is then reconstructed using the conventional fan beam computed
tomography algorithms for A-CT.

I. INTRODUCTION

This paper is concerned with three-dimensional imaging
from the data which are obtained from helical scanning of

a target region with a fan beam source. The early three-

dimensional or volumetric computed imaging systems were
based on step-and-shoot data acquisition procedure. In this

scheme, the three-dimensional target function f(x;y; z) was

formed by acquiring the fan beam data on a �xed plane, e.g.,
z = z0; the resultant database was used in a fan beam com-

puted tomography algorithm to form the cross-sectional im-

age f(x;y; z0). Next, the target was moved in the z (axial)
domain by an increment �z. The fan beam data collection

and cross-sectional imaging was repeated to form the im-

age f(x;y; z0 + �z). This axial step of the target and fan

beam illumination was repeated at various discrete axial z

values to obtain the desired volumetric image. This imaging

scheme is also known as Axial Computed Tomography (A-

CT). One of the drawbacks of A-CT, which utilizes discrete

target axial motion, is the time to acquire its database which

is in excess of 2-3 minutes for a typical diagnostic medical
imaging problem. To circumvent this problem, a data ac-

quisition procedure has been suggested in which the target

is moved with a constant speed in the axial domain [1-2]; the
database for this system is acquired in less than 30 sec for a

typical imaging problem. This volumetric image formation

method is called Helical Computed Tomography (H-CT);
this is due to the fact that the source traces a helical locus

on a cylinder with respect to the target.

The existing reconstruction methods from the fan beam

H-CT data are based on linear extrapolation/interpolation

techniques which combine one or two adjacent helical pitch
data of the fan beam source [2]. For this purpose, some

form of weighted average of the data from the positive and

negative detectors is introduced. A reconstruction method

based on viewing the parallel beam H-CT data in terms
of hexagonally sampled data has been suggested [1] which

combines the data in all helical pitches. However, there is

no multidimensional sampling interpretation of and recon-
struction for the positive and negative detector samples of

the fan beam H-CT data.

In this paper, a method for reconstructing a three-
dimensional target function from its fan beam H-CT data

is presented. A description of the A-CT and H-CT systems
with fan beam sources is provided in Section II. A method

for imaging from the H-CT data is discussed in Section III.

We �rst show that the H-CT data for positive and negative
detector angles can be interpreted as periodically nonuni-

form samples of the A-CT data in the axial direction. We

then utilize the theory of Fourier interpolation from peri-
odically nonuniform sampled data to reconstruct the A-CT

data of the target from its H-CT data. The target function

can then be imaged via the conventional fan beam recon-
struction algorithms at a �xed axial location. The proposed

algorithm could be optimal if the target function is bandlim-

ited in the axial domain. We provide reconstruction results
for a simulated three-dimensional head phantom which is

composed of ellipsoids. This target function is not bandlim-

ited in the axial domain. In spite of this fact, the Fourier-
based interpolation is shown to be more accurate than the

linear interpolation-based method. Note that in practice

the �nite size of the aperture of the source/detector yields
a bandlimited transmit/receive-mode beam pattern in the

axial domain [3, pp. 61-65],[4, Chapter 3]. In this case, the

e�ective target function, as seen by the imaging system, is
bandlimited in the axial domain.

II. VOLUMETRIC COMPUTED IMAGING

A. Axial Computed Tomography

Consider imaging system geometry in A-CT at a �xed

axial value z [4, Section 7.4]. The target on the (x; y) plane
is irradiated with a fan beam source (transmitting element)

and a set of detectors (receiving elements) record the resul-

tant scattering. The source and the detectors are located on

a circle of radius R (gantry) which is centered around the

target region. The gantry (source and detectors) is rotated

continuously with a constant angular speed. We identify

the time-dependent angular direction of the source as the

gantry moves by �. For a �xed source angle �, we denote



the detectors' angle domain with respect to the source by

�. In medical imaging with X-ray sources, the source is
noncoherent and the measured data contain information on

the line integrals of the attenuation coe�cient distribution

in the target region (e.g., see [4]). In the case of coher-
ent sources, the measured data also provide information on

the line integrals of the propagation speed (index of refrac-

tion) distribution in the target [4]. In either case, the line
integrals of a target function (attenuation coe�cient and

perhaps index of refraction) are measured at discrete values

of the source angle � and the detector angle �. In A-CT,
this procedure is repeated at a set of discrete values of z.

The resultant database are the samples of the fan beam

A-CT signal which we denote with sA(�; �; z). We iden-
tify the sample spacing in the three-dimensional measure-

ment domain of the fan beam A-CT signal via (��;��;�z).

Thus, the measured data corresponds to the samples
sA(m��; n��; k�z) for some integer values of (m;n; k).

Note that for a �xed detector angle n��, the sampling in

the (�; z) domain is rectilinear. Suppose the target is within
a disk of radius X0; clearly, X0 < R which is the radius of

the gantry. Moreover, the desired spatial resolution in the

(x;y) domain is �0 � �x = �y: To avoid aliasing (ghosts)
in the reconstructed cross-sectional images of A-CT, the

following constraints should be satis�ed for the source and

detector sample spacing �� �
�0

X0

and �� � �0

R
. Note

that the angular sample spacing in the detector � domain

is more restrictive than that of the source � domain since

X0 < R. The axial resolution is determined by the axial
sample spacing (step) �z which can be chosen to be as small

as the axial thickness of the collimated X-ray beam. The

domain of the source angle is � 2 [0; 2�), and the detector
domain is � 2 [��0; �0] where �0 � arcsin(X0

R
): The size

of the measurement domain is (M;N;K), where M � 2�
��

,

N � 2�0
��

+ 1, K � 2Z0
�z

, and 2Z0 is the axial size of the

target area of interest. There is some redundancy in the

above-mentioned fan beam database. One can show that
the following relationship exists between the fan beam data

for the positive and negative detector angles:

sA(�;��; z) = sA(� + 2�� �;�; z): (1)

For the discrete data, this redundancy becomes

sA(m��;�n��;�z) = sA(mn��; n��;�z) (2)

(note that M

2
�� = �) where

mn�� �m�� + 2n�� �
M

2
�� (3)

(Note that mn is an integer if 2�� is an integer multiple of
��.) This redundancy has been utilized for imaging with

H-CT data [2]. We will also utilize this redundancy to in-

terpret H-CT data for positive and negative detector angles
in terms of periodically nonuniform samples of A-CT data

in the axial direction.

B. Helical Computed Tomography

In H-CT with continuous axial target motion and angular

gantry motion, the helical (unwrapped) source angle, call it

�, is related to the target axial location via � � Cz; where

C is a constant. In this case, the continuous wrapped source
angle domain is related to the axial domain via � = R[ �

2�
] =

R[Cz
2�
] where R[A

B
] denotes the remainder of dividing A by

B. We denote the continuous H-CT measurement signal via
sH(�; z). This signal is related to the A-CT measurement

signal via

sH(�; z) = sA(�; �;z); (4)

where � = R[Cz
2�
]. We denote the distance that the target

moves in the axial z domain for one revolution (2� radians)
of the fan beam source (or gantry) by �z �

2�
C
. In this

case, the H-CT signal can be rewritten via

sH(�; z) = sA(�; �;Z` +
�

C
); (5)

where Z` � `�z; with ` � Q[Cz2� ]; and Q[A
B
] denotes the

quotient of dividing A by B. Note that Z` takes on discrete

values which are integer multiples of �z. Next, we consider

the measured discrete H-CT data. Let �� be the angular
sample spacing in the helical source � domain, and �� be

the sample spacing in the detector � domain. Thus, the

sample spacing in the axial z domain is �z �
��

C
= �z

M
;

where M is the number of helical source angles per revo-

lution (2� radians) of the fan beam source. The measured

discrete H-CT data in the (�; z) domain (i.e., sampled data
of sH(�; z)) translate into following discrete A-CT data:

sH(n��; k�z) = sA(m��; n��; `�z +
m��

C
)

= sA(m��; n��; `�z +m�z) (6)

where m�� = R[Ck�z
2�

]; or m = R[ k
M
]; and ` = Q[Ck�z

2�
]:

For a �xed detector location n��, this corresponds to a

hexagonal sampling in the (�; z) domain of the A-CT signal
sA(�; n��; z). An example of this form of data coverage for

a �xed detector location is shown in Figure 1 (�lled circles).

Consider the redundancy of fan beam data which was
identi�ed in (1). For H-CT data, this redundancy yields

sH(�n��; k�z) = sA(m��;�n��; `�z +m�z)

= sA(mn��; n��; `�z +m�z) (7)

where mn�� � R[�n
2�

]; and �n �m��+2n���
M

2
��: An

example of the samples which are provided by the right side
of (7) for a �xed detector angle n�� is provided in Figure

1 (un�lled circles).

III. HELICAL CT RECONSTRUCTION

A common procedure for volumetric imaging from H-CT

data is to convert this database to A-CT data of the three-
dimensional target region. As we mentioned earlier, for a

�xed detector location n��, the H-CT data corresponds to

a hexagonal sampling in the (�; z) domain; i.e.,

sH(n��; k�z) = sA(m��; n��; `�z +m�z): (8)

The hexagonal sampled data in the (�; z) domain can be

converted to rectangular sampling in the (�; z) domain via



shifting the data in the axial domain by �m�z for a given

source angle m��. Using the shifting property of Fourier
transform, this can be achieved via

sA(m��; n��; `�z) = F
�1
({�kz

)

�
F(`�z)

�
sH(n��; k�z)

�

exp(�jm�z{�kz )
�

(9)

A similar procedure was suggested in [1] (sinc interpo-
lation to shift the data in the axial domain) to achieve

the H-CT to A-CT data conversion in (9) for volumetric

helical imaging with parallel beam sources. Ref. [1] uti-
lizes Yen's interpolation, which was originally introduced

for "unevenly-spaced" data by Yen, for interpolation with

"evenly-spaced" hexagonal data of H-CT. Yen's interpo-
lation, which is based on a matrix inversion, is unneces-

sary in the H-CT problem since the inverse of the matrix

for "evenly-spaced" data is well-known: it is the discrete
sinc function. The method is optimal if the target func-

tion f(x;y; z) is bandlimited in the axial domain within the

band jkzj <
�

�z
. The �nest axial resolution which can be

achieved in these imaging systems is the axial thickness of

the collimated (pencil) X-ray beam. Due to system lim-

itations, most volumetric CT systems possess a �z value
which is larger than the thickness of the collimated X-ray

beam. Thus, the hexagonal H-CT data are aliased in the

axial direction. This results in blurring of the targets which
are smaller than �z in the axial direction.

To reduce the axial aliasing errors, the use of redundant

fan beam data has been suggested [2]. For this purpose,
extrapolative/interpolative methods are introduced which

utilize positive-negative detector H-CT data (see Figure 1)

in either one or two revolutions of the source. However,
one can view the H-CT database in Figure 1 as periodically

nonuniform hexagonal sampled data. There are interpo-

lation methods for reconstructing a one-dimensional signal
from its periodically nonuniform sampled data. One can

also develop a two-dimensional interpolation method for the

H-CT data in Figure 1. However, by a proper selection of
the imaging system parameters or digital preprocessing of

the H-CT data, the interpolation problem can be converted

to a one-dimensional one. This is described next.
In Figure 1, the value of 2�� (twice the detector sample

spacing) is not an integer multiple of �� (the source sample

spacing). For the processing which we will use, we require
2�� to be an integer multiple of �� which results in the

H-CT samples of Figure 2; this will be shown. This can

be achieved in the manner the CT system's hardware is set
up. If that is not feasible, the user can perform sampling

rate conversion in the � domain in the software; this is not
discussed here. Consider the H-CT database in which 2��

is an integer multiple of ��; thus, we have 2�� = m0��;

where m0 is an integer. Then, the redundant H-CT data in
(7) can be rewritten via

sH(�n��; k�z) = sA(mn��; n��; `�z +m�z) (10)

where mn�� � R[�n2� ]; and �n � (m+m0n�
M

2 ) ��:

The database in (10) may also be viewed in the following

way using the inverse of mn transformation in the axial k

index domain. For a given source angle m�� and detector

angle n��, A-CT data are not only available at the axial
value

k�z = `�z +m�z; (11)

but also at the axial value

kmn�z � `�z + (m�m0n+
M

2
) �z (12)

An example of the resultant samples are shown in Figure
2. We refer to m�z in (11) and (m�m0n+

M

2
) �z in (12)

as the o�set axial locations of, respectively, positive and

negative detector samples from `�z. Note that these o�-
set axial values are invariant of the axial index `; however,

they depend on the detector index n. Next, we examine

the problem of reconstruction from the H-CT data in Fig-
ure 2. For a �xed source angle m�� and detector angle

n��, the H-CT data of Figure 2 correspond to periodically

nonuniform data in the axial domain. The following steps
are used to interpolate from this database. We �rst obtain

the discrete Fourier transforms of positive and negative de-

tector H-CT data with respect to `�z for a �xed source
angle m��, and multiply them with a phase function which

depends on their corresponding o�set axial locations from

`�z's (see (11) and (12)):

S1(m��; n��; {�kz ) � F(`�z)

�
sH(n��; k�z)

�

exp(�jm�z{�kz )

S2(m��; n��; {�kz ) � F(`�z)

�
sH(�n��; kmn�z)

�

exp[�j(m�m0n+
M

2
)�z{�kz ] (13)

In the digital implementation of the method, the discrete

Fourier transforms in (13) are performed on an array whose
length is twice the size of the array which represents sH .

The odd samples of this new array are the samples of sH; the

even samples of the new array are set to zero. We call the
resultant the augmented sH array. The axial sample spac-

ing of the augmented array is �z

2
. Thus, discrete Fourier

transform yields the samples of S1 and S2 within the band
jkzj �

2�
�z

which is twice the size of the bandwidth of the

original sH array.

We de�ne the following function:

Wn � exp[j(
M

2
�m0n)

��z

�z

] (14)

We also de�ne

En({�kz ) �
n
Wn; for {�kz � 0;

W �

n ; otherwise
(15)

where W �

n is the complex conjugate of Wn. Next, we form

S(m��; n��; {�kz ) �
�
S1(m��; n��; {�kz

)�

En({�kz ) S2(m��; n��; {�kz )
� �

1�En({�kz )
��1

(16)

Provided that the target function is bandlimited within

jkzj �
2�
�z

in the axial domain, then one can show that (16)



yields the unaliased samples of A-CT data (within a known

constant); i.e.,

S(m��; n��; {�kz ) = SA(m��; n��; {�kz ): (17)

In the image reconstructed from the data in (16), the tar-
gets which are smaller than �z

2
in the axial domain appear

blurred (aliased). The above procedure su�ers from the

wrap around ringing (boundary) errors of DFT (sampled
data truncation). To reduce the wrap around errors, we use

a version of discrete cosine/sine transforms which provide

continuity at the boundaries. (The implementation is not
described here.)
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