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ABSTRACT

Prediction and search techniques are introduced for e�-
cient rate-distortion optimized motion estimation in a very
low bit rate video coding framework. For prediction, three
types of predictors are considered: mean, weighted mean,
and median. Prediction allows us to constrain the motion
vector search to a small diamond-shaped area whose center
is the predicted motion vector. The size of the search area is
further constrained by employing a probabilistic model. We
evaluate two models, both of which permit the contraction
or the expansion of the search area as a function of the local
statistics of the motion 
ow. The proposed techniques are
analyzed in the context of a very low bit rate DCT-based
video coding framework, where a rate-distortion criterion
is used for motion estimation as well as for 8 � 8 block
coding mode selection. A particular resulting very low bit
rate video coder is shown experimentally to outperform the
H.263 TMN5 simulation model in terms of encoding speed
and compression performance, simultaneously.

1. INTRODUCTION

Motion estimation is usually used to exploit temporal re-
dundancies in very low bit rate video coding systems [1, 2].
Among the many motion estimation algorithms [1] that
have been developed, those that are based on the conven-
tional block matching algorithm (BMA) stand as the most
popular and the simplest in concept, design, and implemen-
tation. The most notable example is the two-step BMA-
based algorithm, which is adopted in many H.263-based
video coders such as Telenor's TMN5 simulation model.
The �rst step is an integer-pel accuracy full-search BMA
(FS-BMA). The second step improves estimation accuracy
by producing 1

2
-pel motion vector estimates.

There are many problems associated with the above two-
step motion estimation algorithm. Besides its high compu-
tational complexity, the FS-BMA performs poorly during
non-translational motion activities. This, coupled with the
FS-BMA's sensitivity to video input noise, produces a non-
smooth motion �eld that costs many precious bits at very
low bit rates. Moreover, producing motion vector estimates
with 1

2
-pel accuracy increases the complexity and the bit

rate while normally providing a small performance advan-
tage.
In this paper, we present a predictive rate-distortion

(RD) optimized motion estimation algorithm, where several
prediction and search methods are analyzed and compared.
The work is presented in the context of a simple DCT-based
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video coding framework, where 8�8 blocks are used during
both motion estimation/coding and DCT residual coding.
Predictive motion estimation has recently become an im-

portant research area [3, 4, 5, 6, 7]. We here study the
complexity and performance of linear prediction (mean and
weighted mean) and non-linear prediction (median) when
applied to motion estimation/coding in the context of very
low bit rate video coding. We also introduce two proba-
bilistic models that allow the expansion or contraction of
the predicted search area based on the local statistics of
the motion 
ow.
To reduce the motion bit rate, which occupies as much

as 50% of the total bit rate, several RD-constrained [8, 9,
10, 11] motion estimation algorithms have recently been
introduced. In this paper, we build on our earlier work
[8, 9], where we use a Lagrangian-based criterion both to
locate the best motion vector and to alternate between
three modes of operation: motion-only coding, motion-
compensated predictive coding, and intra coding.
The proposed motion estimation algorithm is computa-

tionally e�cient, yet its estimation performance is compa-
rable to that of the FS-BMA. Experimental results show
that a resulting very low bit rate video coder outperforms
Telenor's TMN5 simulation model in terms of both com-
putational complexity and compression performance. Our
video coder also has the additional advantage that quality,
bit rate, and complexity are easily controllable. Next, we
present our motion estimation algorithm. This is followed
with a description of the overall video coding framework.
Section 4 presents our experimental results.

2. PROPOSED MOTION ESTIMATION

Suppose that the video frame to be predicted is partitioned
into 8� 8 blocks. For each block, a vector d = (x; y) 2 S,
where S is the set of all possible vectors in the search
area, is sought that minimizes the Lagrangian JM� (d) =P
r2W (I(r; n)� I(r+ d;n� 1))2 + � RM (d), where r is

the spatial index of the image pixels, n is the time index,
I(r; n) is the image intensity of the candidate block in the
current frame, I(r+ d; n � 1) is the image intensity of the
matching block in the previous frame, W is the size of the
matching window, and RM (d) is the motion vector bit rate.
Minimizing JM� (d) is guaranteed only by considering all the
possible candidate motion vectors in the search area, which
involves a large number of search operations. The cost of
each search operation is reduced in this work by using the
partial Lagrangian computation technique, which is a gen-
eralization of the well-known partial distortion computa-
tion technique. Such a technique reduces the number of
computations by as much as 80%. Unfortunately, the com-
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Figure 1. A diamond-shaped vector search area.

putational load can still be very high. This suggests that
the size of the search area be substantially reduced. The
fact that low resolution video sequences generally exhibit
limited motion activity allows us to limit the search area
to, for example, a small square of size �8. Even then, 289
search operations must still be performed. Therefore, many
techniques such as three-step search and hierarchical search
have been suggested [1], reducing substantially the set of
possible motion vectors. The cost, however, is a signi�cant
decrease in estimation performance.

2.1. Prediction

By accurately predicting the location of the best motion
vector candidate, one can limit the searching to a relatively
small area in the neighborhood of the predicted motion vec-
tor, while still likely locating the \optimal" motion vector.
This is indeed possible, thanks to the large amount of mo-
tion �eld redundancies within the same frame as well as
between consecutive frames. Figure 1 shows an example
of a search area whose center is the most likely integer
motion vector v = (xi; yi) given a prediction model. The
components of v are the closest integers to the correspond-
ing components of the real predicted motion vector. Next,
we describe the three di�erent predictors (mean, weighted
mean, and median) considered in this work. The design of
the linear predictors is simpli�ed by computing correlation
values of motion vectors within a su�ciently large three-
dimensional region of support (ROS) with the current mo-
tion vector. Such a region includes previously coded motion
vectors representing blocks that are close spatially and/or
temporally. Figure 2 shows the average correlations (cx; cy)
of the x and y components of the ROS motion vectors with
the current one. Note that these values decrease rapidly
as we go away from the current block along the spatio-
temporal axis, and that spatial dependencies are stronger
than temporal ones.
The mean predicted motion vector is given by ~v =

1

K

PK

k=1
vk . Based on Figure 2, only motion vector values

representing blocks A, B, and C are averaged to produce
the mean prediction. More accurate prediction is obtained
by the weighted mean, given by

~v =

KX

k=1

�kvk;

where the �k's are proportional to the correlation values
shown in Figure 2. In this work, the �k's are computed
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Figure 2. Average correlation values (cx; cy) of the
ROS motion vectors with the current one.

o�-line following conventional linear prediction techniques.
Based on Figure 2, only the motion vectors representing the
blocks A, B, C, D, and F are signi�cantly correlated with
the current one. Thus, a �fth order predictor is used.

Like those of the mean and weighted mean vectors, the
two components of the median vector are computed inde-
pendently in the same way. Two di�erent median vectors
are computed: one based on the H.263 3-block ROS (blocks
A, B, and D) and another based on a 5-block ROS (blocks
A, B, C, D, and G). As will be shown later, the 3-block me-
dian is better in terms of prediction performance. However,
the 5-block median potentially provides more robustness to
channel errors.

2.2. Search Area Size

The size of the diamond-shaped search area can be ex-
pressed in terms of layers, as shown in Figure 1. A con-
ceptually simple searching technique is to search an exper-
imentally pre-determined �xed number of layers. However,
this technique can be ine�cient, as if the prediction is ac-
curate, the motion vector located at the center is likely the
best candidate. We next introduce an alternative technique,
where we employ a probabilistic model that places a soft
constraint on the size of the diamond-shaped search area.
First, let us assume that the layers 0; 1; 2; : : : are searched
sequentially in the same order as we go away from the cen-
ter of the search area. Moreover, let J0; J1; : : : ; Jn; : : : be
the minimum Lagrangian values associated with the layers
0; 1; : : : ; n; : : :, respectively. The two proposed probabilistic
models are based on the following two hypothesis:

� Hypothesis I: If Jn > Jn�1, then it is unlikely that
we will �nd a better motion vector by continuing the
search outward. Thus, searching more layers is not
necessary. This hypothesis is violated when the La-
grangian surface is not convex.

� Hypothesis II: Only if Jn�1 < Jn < Jn+1, will we be
con�dent that searching more layers is wasteful. This
almost guarantees optimality, but at the expense of a
much larger computational load.

Either model can be better than the other in terms of
complexity-performance tradeo�s, depending on the partic-
ular video sequence being coded. As expected, both models
would fail in areas where many non-motion changes occur.



3. THE VIDEO CODING FRAMEWORK

The proposed motion estimation algorithm is studied, an-
alyzed, and tested within a simple RD-constrained DCT-
based framework, where the �rst video frame is intra coded,
and the following frames are forward inter coded. Inter cod-
ing of each 8�8 block involves motion-only coding, motion-
compensated predictive coding, or intra coding.
After determining and coding1 the motion vector d� lead-

ing to the minimum value of the Lagrangian JM� (d), the
corresponding prediction error block is DCT coded. The
quantizer qR 2 QR is chosen to minimize the Lagrangian

J
R
� (qR) = Ddct(qR) + � Rdct(qR);

where Rdct(qR) and Ddct(qR) are the average bit rates and
distortions, respectively, associated with quantizer qR 2

QR. Moreover, the current original 8 � 8 block is intra
coded by minimizing the Lagrangian

J
I
�(qI) = DI(qI) + �RI(qI);

where RI(qI) and DI(qI) are similarly the bit rates and dis-
tortions, respectively, associated with quantizer qI 2 QI .
Finally, let the quantity Rm be the rate associated with
specifying the mode m of operation. By incorporating such
information, and other types of side information (e.g., quan-
tizer number), the three Lagrangian values are computed,
and the mode of operation leading to the smallest value
should be selected for the current block.
Unfortunately, achieving the best rate-distortion perfor-

mance can only be guaranteed by comparing the three
Lagrangian values, which typically requires a relatively
large number of computations. One computation-reduction
method involves simplifying the DCT intra and residual
coding procedures. A better method involves avoiding alto-
gether the DCT coding process once the Lagrangian JM (�)
is relatively small, which can reduce the video coding pro-
cess to mostly motion vector estimation and coding.
Finally, an important problem is how to determine a

value for the Lagrangian parameter �. In this work, � is
updated recursively as described in [12] to meet a bit rate
and/or a quality constraint. For example, consider video
coding in a �xed-rate communication system that is gov-
erned by s(t+1) = s(t)+R(t)�B, where s(t) is the size of
the bu�er at time t, R(t) is the variable output bit rate of
the encoder, and B is the �xed output bit rate of the bu�er.
Assuming Smax is the maximum size of the physical bu�er,
we would like to maintain a bu�er size equal to s� = Smax

2
.

This can be closely achieved by recursively computing �(t)
using the formula [12]

�(t) = �(t� 1)
s(t)

s�
:

Although simple, this method is found experimentally to
perform quite well. In fact, using a bu�er of size 10 kilobits,
over
ow and under
ow problems were never encountered
during our coding simulations.

4. EXPERIMENTAL RESULTS

The target bit rates for our experiments are in the range be-
tween 4 and 10 kbps for color sequences. The miss america
and car phone sequences in QCIF format at 10 frames per

1Each motion vector o�set (with respect to the predictedmo-
tion vector) is coded using a Hu�man-like VLC table.

psnr mean wm med-a med-b

35.9 0.566 0.559 0.561 0.582
36.8 0.620 0.602 0.612 0.628
37.8 0.689 0.670 0.659 0.679

31.2 1.686 1.598 1.553 1.602
33.0 2.008 1.930 1.860 1.928
34.9 2.318 2.190 2.109 2.194

Table 1. Average entropy for miss america (top
three rows) and car phone (bottom three rows) of
the motion vector x components in the search area
centered at the mean, weighted mean (wm), 3-block
median (med-a), and 5-block median (med-b).

second are selected for testing. Only integer-pel accuracy
motion vector estimates are obtained, and B-frames are not
used.
Table 1 shows the average entropy for miss america

and car phone of the motion vector x component in the
search area centered at the mean, weighted mean, 3-block
median, and 5-block median. Notice that, as a predictor,
the weighted mean consistently outperforms the uniform
mean. Moreover, the 3-block median outperforms the lin-
ear predictors, especially for the more active sequence car
phone. With the exception of its potentially higher robust-
ness to channel errors, the 5-block median does not seem to
be a good choice. Finally, note that the entropy does not
depend signi�cantly on the type of prediction being used.
Taking prediction performance, complexity, and robustness
into consideration, the 3-block median stands on top.
Figure 3 suggests that both of the search models (repre-

sented by Hypothesis I and Hypothesis II) discussed above
lead to more than one order of magnitude reduction in num-
ber of computations, while sacri�cing only an average of
0:15 dB loss in PSNR performance. Even for the relatively
active video sequence car phone, the reduction in number
of computations can be as large as 100 : 1.
Finally, Figure 4 shows a comparison in terms of aver-

age PSNR between a resulting video coder and Telenor's
TMN5 simulation model (using all advanced options) for
the Y component of 150 frames in the bit rate range of in-
terest. Clearly, our coder performs signi�cantly better than
the H.263 TMN5, especially at the very low bit rates. More-
over, note that the new fast searching technique results in a
small loss in PSNR performance. Similar experiments using
car phone reveals that the our coder performs consistently
better than Telenor's H.263 TMN5 simulation model, yet it
is also more computationally e�cient.
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