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ABSTRACT

Block-based motion compensation fails to maintain an
acceptable level of prediction error which makes the
transmission of this error impossible for very low bit-
rate coding owing to the small bit allocation. The rea-
son is that the motion model assumed in block-based
techniques cannot approximate the motion in the real
world precisely. To develop an e�ective motion com-
pensation method for very low bit-rate video coding,
we address the issue of adopting more sophisticated
motion model than block-based. The motion model
discussed here is based on the representation of optical

ow in its principal components domain. The perfor-
mance of motion compensation based on this model
is compared with MPEG using the PSNR mesure and
qualitative experiments. Both of these criterias show a
gain of compression in the ordre of 30%.

1. INTRODUCTION

Coding of digital image sequences has been the fo-
cus of much recent research interest. Applications in-
clude TV, HDTV, multimedia and videoconferencing.
Considering the present accessibility of very low bit-
rate channels that were initially designed to transmit
speech or text, the realization of video communication
at such rates may bring forth the future populariza-
tion of video codecs. Such low bit-rate channels in-
clude radio channels, public switched telephone net-
works (PSTN), and computer networks for transmit-
ting electronic mail, which require bit-rates lower than
64 kb/s.

The main technical issue of very low bit-rate video
communication is clearly the video coding method, which
is required to accomplish the necessary bit-rate with
su�cient image quality. The highest compression ra-
tios are achieved by using motion compensation meth-
ods to reduce temporal pixel redundancies inherent in
image sequences. Motion compensation requires the
decoder to construct an estimate of the motion �eld
and to use it to reconstruct images by interpolation.
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Various methods of motion compensation are charac-
terized by how information about this motion �eld is
obtained at the decoder.

All approaches to motion compensation estimate a
motion �eld by relating pixel intensities in the previous
frame of a sequence to their new locations in the cur-
rent frame. A basic problem to any approach to motion
compensation is that this motion �eld estimate must be
reconstructed at the decoder where current frame pixel
intensities are not available. The three standard solu-
tions to this problem are block-based motion compen-
sation, region-based motion compensation and dense
motion compensation.

From the viewpoint of implementation, the block-
based hybrid method of block matching [6] and discrete
cosine transform [11] clearly has the biggest advantage.
These block-based motion compensation strategies in-
volve estimating the motion of each image block by a
single vector [1]. At very low bit-rates, however, this
coarse approximation usually results in visible block
e�ects [7].

Dense motion �elds make no assumption on the mo-
tion in the real world. They are generally represented
by a 2-D vector for each pixel, resulting in twice the
number of parameters needed to represent an image.
This apparent overparametrization of the motion �eld
limited its exploitation in motion compensation to the
use of recursive approaches. These techniques predict
the motion �eld at the current frame based on previ-
ously decoded frames [9, 13]. Since the motion �eld
is computed from information already available to the
decoder, no motion estimates need to be transmitted
over the channel. However, recursive methods are of-
ten inaccurate in tracking both motion changes from
frame to frame and motion �eld discontinuities within
a frame [10].

In this paper, we propose a more accurate descrip-
tion of the motion based on the dense motion �eld.
Since typical motion �elds are far smoother than typi-
cal intensity �elds [3], they have a bigger compression
potential. We subdivide these motion �elds into mo-
tion blocks and represent each motion block in a trans-
formed domain. The transformation basis is learned



and adapted in a self-organized manner to represent
the motion of the scene. This allows us to reconstruct
dense motion �elds of invisible error, while transmit-
ting the same amount of motion information as stan-
dard block-based methods. This has the advantage of
limiting reconstruction error while achieving a compact
motion description.

The paper begins in section 2 with a descrition of
the coding strategy. Experimental results presented in
section 3 demonstrate the superiority of our system to
existing video coding systems. The paper concludes in
section 4 with some �nal observations and pointers to
future work.

2. DESCRIPTION OF THE CODING

STRATEGY

Figure 2 illustrates the coding strategy. A spatial study
on the di�erences between the incoming image I(t+1)

and the previously reconstructed image
^

I (t) allows us
to divide the image into dynamic and static regions.
The optical 
ow in the dynamic regions is �rst com-
puted and subdivided into motion blocks. The mo-
tion in each dynamic block is then transformed and
the transform coe�cients are quantized and transmit-
ted to the receptor who reconstructs dense motion by
inverse transformation. The reconstructed motion is
then used to reconstruct images. The choice of the
transformation for each block depends upon the class
of the 2D motion present in the block. To avoid error
accumulation, intraframe images are transmitted each
time the error becomes higher than a threshold.

2.1. Detection of static blocks

A block Bt at time t is considered to be static, if the
RMS error between this block and the same block of
the previous image Bt�1 is less than a threshold. This
block does not need to be coded and is simply replaced
at the receptor by Bt�1.

The main issue here is the choice of the threshold to
determine whether a block is static or dynamic. This
choice should satisfy both of these restrictions:

1. the threshold should be independant from the
noise present in the images;

2. all moving blocks should be considered to be dy-
namic.

Because of the �rst restriction, the threshold should be
adapted to the images in its input. In other words, it
should be a statistical measure on the RMS error of
all blocks. At the same time, the threshold should al-
ways be higher than a limit Tr because of the second

restriction. This limit means that all blocks Bt having
RMS(Bt; Bt�1) > Tr are considered to be dynamic.
The criteria to decide if the block Bt is static or dy-
namic is then:

RMS(Bt; Bt�1) > min(Tr;E[RMS(Bt; Bt�1)]) (1)

2.2. Motion classi�cation

A �xed number of motion classes (seven for the module
and phase in the actual implementation) is adopted.
A principal component transform of the module and
phase of the image motion are associated to each class
as you can see in the next section. We will note by T a

i

and T �
i the matrix of transformation for the ith class

of the module and phase respectively.

The module and phase of each particular motion
block B are associated with the class that is the most
correlated with this block as shown in �gure 1. The
correlation mesure is chosen to be the scalar product
between the block and the principal component of the
class. We will note the principal component of the
matrix T by T (1). The decision criteria for the classi-
�cation problem is then:

a 2 i if T a
i (1):a > T a

j (1):a 8j 6= i (2)

� 2 i if T �
i (1):� > T �

j (1):� 8j 6= i (3)
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Figure 1: Classi�cation system architecture. Inputs
are the module (phase) of the motion blocks. The c
principal components a

i T1 (
�
i T1) consist of a basis image

of size n � n and output the principal coe�cient a
i y1

(�i T1). The principal coe�cient to be sent is chosen to
be the one having the maximum norm

2.3. Motion transformation and quantization

A neural network using the Hebbian learning rule is
used to learn the principal components of the motion
of each class [4]. The matrix of transformation T is
then adapted iteratively to converge towards the prin-
cipal components of its input. If we note by x and y
the input and output of the matrix respectively, the



adaptation law that we use can, then, be described by
the equation [12]:

�T = �(yxt � LT [yyt]T ) (4)

where LT [:] sets all elements above the diagonal of
its matrix argument to zero, thereby making it Lower
Triangular. Let �(t) be such that limt!1 �(t) = 0
and
P
1

t=0
�(t) = 1. Under these conditions, we can

prove [12] that if T is assigned random weights at time
zero, then with probability 1, equation 4 will converge
and T will approach the principal component trans-
form.

Since the transform coe�cients are uncorrelated and
ordered in descending order of variances, retaining the
�rst few coe�cients provides an adequate approxima-
tion of the input motion and achieves good compres-
sion. In the actual implementation, we keep only one
coe�cient for the module and phase. This coe�cient
is quantized using a uniform quantizer. The upper and
lower limits of the quantizer are transmitted to the re-
ceptor as an overhead before each image.

The transforms associated to each motion class (and
therefore the nature of each class) are adapted during
the coding process, in order to re
ect the particular
structure of the motion present in the current image.
Since the adaptation information is costly to transmit,
it is established on the basis of previously transmitted
and reconstructed motion 
ows.

2.4. Image reconstruction

Owing to the orthonormal nature of the transforms in-
volved, the reconstruction of the image motion 
ow
simply involves multiplication by the transpose of the
forward transform matrices.

Image reconstruction is made by linear patch dis-
placement interpolation. This method gives improved
results since it assumes smoothness in the velocities
rather than in image intensities [8].

Reconstruction errors tend to be mostly located at
object boundaries and cause an error accumulation in
time. We attenuate this error by transmitting intra-
frame images each time the RMS error becomes higher
than a threshold. The value of this threshold controls
the desired compression. These images are transmitted
uniquely for dynamic blocks and are coded by retaining
a �xed number of coe�cients in the DCT domain.

3. EXPERIMENTAL RESULTS

The transform basis adaptation allows us to recon-
struct dense optical 
ows of invisible error by retaining
as less as 1 vector per dynamic block. The original and
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Figure 2: Block diagram of the coding strategy

reconstructed optical 
ow for the \Rubik" sequence are
given at �gure 3. The mean angle error [2] between the
original and the reconstructed 
ow is of 2�.

Using dense motion description allows us to work at
low bit rates. At �gure 4, we show the PSNR in the re-
constructed images of the \Rubik" sequence with vari-
ous compressions using our system compared to MPEG
I [5]. We notice that our system with a compression of
79 : 1 reconstructs images with less error than MPEG
I with a compression of 66 : 1 which is equivalant to a
compression gain of 20%. Qualitative experiments con-
�rm this result. In fact, 3 random persons preferred the
images reconstructed with our system (compression of
79 : 1) 4=4, 1=4, and 2=4 of the time respectively. Typi-
cal reconstructed images for both systems are presented
in �gure 5.

Similar tests were conducted on the \Taxi", \Nasa",
and \Tunnel" sequences and they showed, respectively,
a gain of compression of 45%, 24%, and 42% compared
to MPEG I.

4. CONCLUSION

In this paper, a new motion compensation scheme is
presented. It particularly addresses the problem of
dense motion modeling and compression. The motion
was modeled in its principal components space which
allowed us to reconstruct dense motion �elds of invisi-
ble error by retaining as less as one vector per dynamic
block. Quantitative and qualitative results show a gain
of compression of 30% compared to MPEG I. This is
adequate for the video transmission at low bit-rates.

Many problems still remain to be solved. Our future
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Figure 3: Original and reconstructed optical 
ow for
the \Rubik" sequence. Mean angle error is 2�

Our system −> 92:1  

Our system −> 79:1  
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Figure 4: PSNR in the reconstructed images of the
\Rubik" sequence with various compressions using our
system compared to MPEG I

work is focused on the following subjects:

� use of the transmitted motion to interpolate the
colour as well as the luminance;

� use of the position of static blocks to adapt the
interpolation in the image reconstruction process.
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