
AN EFFICIENT IMPLEMENTATION OF AFFINE TRANSFORMATION USING

ONE-DIMENSIONAL FFT'S

Erwin Pang and Dimitrios Hatzinakos

University of Toronto, Department of Electrical and Computer Engineering
10 King's College Road, Toronto, Ontario, M5S-3G4, Canada

Tel: (416) 978-1613, Fax: (416) 978-4425, email: dimitris@comm.toronto.edu

ABSTRACT

In this paper, we propose a new decomposition scheme and
an e�cient interpolation algorithm for a�ne transforma-
tion of a digital image. We try to reconstruct the a�ne-
transformed image by resampling it with the highest possi-
ble quality, lowest complexity and throughput rate. Based
on the proposed decomposition, the transform is completed
by a sequence of 3-pass translations and a scaling opera-
tion where each of them is one-dimensional in nature. This
method preserves quality and guarantees simplicity. We
place the emphasis on the feasibility of a parallel imple-
mentation that can bene�t from pipeline technologies. Fur-
ther, an e�cient FFT-based implementation of this new
algorithm is suggested. Experimental evidence of the e�ec-
tiveness and robustness of the proposed method is reported.
The problem is relevant to video transmission, image regis-
tration, and computer graphics manipulation.

1. INTRODUCTION

Geometrical transformation of digital image is a common
application in image processing [1] [2]. The uniformly dis-
tributed samples on a two-dimensional plane, after being
transformed, will be misaligned with the reference grid pat-
tern which are only de�ned for discrete locations. An inter-
polation of these transformed pixels is thus needed to re-
cover those on the grid points. This process can be treated
as resampling of the transformed image. High quality re-
sampling algorithm can contribute to image compression,
registration of multispectral satellite information, and im-
prove the �delity of video transmission. An e�cient algo-
rithm can also give bene�ts to medical imagery [3], radar-
directed navigation, and many other real-time applications
[4]. It becomes necessary to transform digital image in a
fast manner and preserve high quality simultaneously.
Generally, two issues should be considered, namely the

transformation scheme and interpolation algorithm. The
transformation scheme deals with strategies than can trans-
form an image e�ciently. Performance parameters like
throughput rate, complexity, amount of distortion, and re-
quirement of memory space are often sensitive to the partic-
ular transformation scheme used. Recently, with the evolu-
tion of parallel processors, the compatibility of the scheme
with a pipeline structure has become a valuable asset. The
interpolation algorithm involves recovering pixel values at
inter-pixel positions. This algorithm a�ects image quality,
transform rate, and complexity of the entire process.
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In this paper, we consider a general a�ne transforma-
tion of an image. Unlike the rigid-body transform which
constrains image dynamics to translation, rotation, and re-
sizing, an a�ne transform de�nes projection of complex 3-
D motions on a 2-D plane. For example, images taken by
satellite sensors can be modeled by a�ne transform since
these sensors often incline with the earth surface during
image acquisition. We propose a new approach to decom-
pose the intrinsically 2-D operation into three passes of 1-
D shifting plus one scaling operation, and we concentrate
on a FFT-based method to resample the translated signal.
While conventional two-pass methods cause severe distor-
tion, the proposed three-pass one reduces the errors signif-
icantly. Moreover, the complementary FFT-based interpo-
lator, which corresponds to an ideal low-pass �lter, has been
shown to be more accurate and simpler than other spatial
interpolation methods [5]. The emergence of the parallel
computation techniques enables the use of pipeline-FFT
microcircuits to perform real-time resampling. We show
that the quality and e�ciency of the three-pass FFT-based
method is superior than other two-pass spatial algorithms.

2. AFFINE MODEL FOR
THREE-DIMENSIONAL MOTIONS

A general a�ne transformation relates two image frames
f1(x1; y1) and f2(x2; y2) with the following mapping equa-
tions [6]

x2 = Ax1 + By1 + E (1)

y2 = Cx1 +Dy1 + F (2)

which can be compactly expressed in matrix form as"
x2
y2
1

#
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A�ne transform preserves parallel lines and equispaced
points. Due to its linearity and simplicity, a�ne model is
widely used in block matching and motion estimation prob-
lems for compression purposes [6]. Another credit of a�ne
transform is its generality to represent 2-D projections of
complex 3-D motions on an image plane. This implies that
the a�ne transform, as uniquely de�ned by the six param-
eters in (3), is adequate to characterize projections of six
degrees of freedom in a three-dimensional space. This in-
cludes three-dimensional translations, rotations, and scal-
ing as special cases.
Modelling of a�ne transform to project 3-D rotations

of planar objects on an image plane is illustrated as an
example. Orthographic projection is assumed which gives



Figure 1. Modelling of 3-D rotations by a�ne transform.

(Left) Original image plane lying on xy-plane. (Right) Projec-

tion of the planar object on xy-plane after rotating by (�; �; �) =

(30o; 30o; 30o) using proposed method.

parallel projection and avoids perspective distortion. We
de�ne R� , R�, and R� as the three anticlockwise rotations
about the Cartesian coordinate axes in the order of z-axis,
x-axis, and then y-axis, i.e.

I2 = (R� R�R�) I1 = R I1 (4)

where �, �, and � are rotated angles about z, x, and y-axis
respectively, and I1, I2 are the original ([x1 y1 z1]

T ) and
transformed coordinates ([x2 y2 z2]

T ), respectively. R is a
3x3 matrix representing the combined rotations, and can
be shown to be
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#
(5)

where fc6 � cos 6 ; s6 � sin 6 j 6 : �; �;�g. Since the
transformed planar object is projected on an image plane,
only the x and y coordinates are visualized, givingh
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Provided z1 is known, (6) is an a�ne transformation. If
the planar object is initially lying parallel to the xy-plane,
the translation terms become constants. Figure 1 shows a
2-D projection of a planar image which undergoes rotations
with (�; �; �) = (30o; 30o; 30o) and the proposed methods
described in the following sections are used. The original
image is assumed to be lying on the xy-plane such that z1 =
0. Generally, more complex motion and image distortion
can be correctly modeled by an a�ne transformation [5].

3. TRANSFORMATION SCHEME

3.1. One-Pass and Two-Pass Method

The one-pass method transforms an image directly using
two-dimensional interpolator like bilinear, bicubic, and bi-
harmonic method. It requires two separate bu�er frames
to support the operations. This may not be favourable for
transforming large images. However, its distortion is found
to be less than that of a two-pass method [2] [7]. This
concludes that memory usage and complexity is a limiting
factor for a one-pass process.

The two-pass method breaks the 2-D process into two
consecutive 1-D processes. The decomposition takes the
form of h
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where p = A, q = B, r = C

A
, l = D �

BC

A
. For the special

case of rotation, the decomposition becomesh
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which is referred to twice skew transformation in [1]. The
�rst operation is purely horizontal along the x-axis while
the subsequent operation is purely vertical along the y-axis.
Each of the operation involves a translation and a scaling
along one axis so that only one line bu�er is required to com-
plete the transformation. Moreover, interpolation is simpler
since it can be carried out line-by-line, and parallel imple-
mentation is possible. However, due to the intermediate
scaling involved, severe distortion will result [8].

3.2. Proposed Three-pass Decomposition

A three-pass method has been proposed in [9] to perform
rotation only, where the decomposition ish
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It can be seen that all three steps are one-dimensional and
they involve no scaling at all. This method reduces distor-
tion signi�cantly [8]. Moreover, the distortion introduced
is \added" or non-destructive which means complete elim-
ination of it is possible by some post-processing.
Taking the advantages of the characteristics of such three-

pass algorithm, we generalize the decomposition scheme
and apply it on a�ne transform. We propose to break the
3x3 transform matrix in (3) into separate processes as"
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which corresponds to a sequence of three-pass, one dimen-
sional operations along either axis in each pass. These op-
erations are translations (t0) as shown in Table 1, and the
parameters on the right side of (10) are de�ned in Table 2.
Since scaling is performed at the �nal stage, the loss in the
intermediate image is minimized, in contrast to the two-pass
method which requires two translations and two scaling op-
erations. In other words, we intend to trade a scaling for a
translation in an e�ort to reduce distortion and improve the
resampling quality. For the case of xy-plane rotation about
the origin, [A B;C D] in (10) (displacement E = F = 0)
reduces to (9).

4. INTERPOLATION AND RESAMPLING
ALGORITHM

4.1. Spatial Domain Interpolator

There are several interpolating functions for image recon-
struction [10]. The simplest one is the nearest neighbour
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Table 1. Three-pass sequence for a�ne transform
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Table 2. Parameters formulating the decomposition

function where the value at any resampled point is taken
as the nearest pixel value. Another algorithm is linear in-
terpolation where the interpolating function is simply con-
structed by joining samples with straight lines. Cubic in-
terpolation [11] is more accurate since it uses more neigh-
bouring points for resampling. Four points are used in a
one-dimensional case. Spline functions [12] are more com-
plex. They are positive everywhere and tend to smooth
the resampled image. Despite the high accuracy of spline
function, the complexity is too large to be used in real-time
applications. A frequency reshaping method for signal in-
terpolation is introduced in the next section.

4.2. FFT-Based Interpolation

In correspondence with the approach of the proposed trans-
formation scheme, we should put the emphasis on resam-
pling a translated signal. Starting with the shifting prop-
erty of Fourier transform for signal translations, we have

f(t� t0)() e
�j!t0F (w) (11)

where F (!) is the Fourier transform of f(t) and t0 is the
translation parameter which can take any real value. To
interpret (11) in an alternative way, we write

f(t� t0)() e
�j!t0 jF (!)jej�(!) = jF (!)je

j

�
�(!)��0(!)

�
(12)

where �(!) is the phase function of F (!) and �0(!) = �!t0
is a phase reshaping factor. In the discrete case, the DFT
of the shifted function can be obtained by modifying the
phase of the DFT coe�cients of the unshifted function. For
a band-limited signal which is sampled above the Nyquist
rate, the following relationship holds
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where we assume N , the signal length, is even. It is shown
in [9] that the above method gives the best quality to image
rotation. As a result, the entire shifting can be achieved by
using FFT as follows

ft0(n) = IFFT
n
FFT

�
f(n)

�
� ej�

0(k 2�
N

)
o

(14)

where ft0(n) is the resampled version of f(n) after translat-
ing t0 units. Spatial scaling is done by a subset or padding
operation of the FFT coe�cients. Assuming we have to re-
sample M samples from N samples. For signal expansion,
M > N and the equivalent operations are

F (k) =
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2
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F (M � k) = F
�(k) for 1 � k �

M

2
� 1 (16)

Signal contraction is simply done by preserving a subset of
coe�cients for reconstruction. This is lossless provided the
signal is oversampled.

5. SIMULATION RESULTS

Simulations are performed to demonstrate the e�ectiveness
of our proposed algorithms. We will use the a�ne transform
described in Section 2. The corresponding transformation

matrix is [ 7
8

�
p
3

8
0;
p
3
4

3
4
0; 0 0 1]. According to Table 2,

the three-pass parameters in (10) are found to be a = 3
4
,

b = 1

2
p
3
, c =

p
3
4
, d = 0, e = �1p

3
, f = 0. Cubic interpola-

tion is used to compare with the FFT-based method. The
two-pass decomposition is applied for the cubic method as

given in (7) with p = 7
8
, q = �

p
3

8
, r = 2

p
3

7
, l = 6

7
. First

we transform a synthetic image with simple sinusoidal cir-
cular pattern of given frequency or wavelength. The test
image with dimension 256x256 with origin at image centre
is de�ned to have the distribution

T (x; y) = 0:5
h
1 + cos(

2�

�

p
x2 + y2)

i
(17)

where 0 � T (x; y) � 1 and � is spatial wavelength measured
in units of sample spacing. It can be seen that �n = 2
corresponds to Nyquist limit. To eliminate edge e�ects,
only central regions are used in error analysis.
Figure 2 shows the root-mean-square (rms) error of the

transform for cubic and FFT method at di�erent wave-
length. Note that 0 dB corresponds to rms error of 1, the
case of complete failure. The three-pass and FFT-based
method has signi�cantly smaller error than the two-pass
and cubic method. Note that the curve for the FFT method
drops rapidly between � = 2 to � = 3. This is because the
three-pass transformation involves a scaling down of a = 3

4
,

so that the image is expected to give good results only if
it is bandlimited and have � > 4

3
�n � 2:6667. The curve

for the cubic method, however, only decays slowly as the
wavelength increases. To illustrate the di�erence between
the two methods, we transform the synthetic image forward
and backward twice, and then forward again to the trans-
formed pattern for � = 4, and show the results in Figure 3.
The cubic method gives a blurred pattern while the FFT
method gives pattern nearly indistinguishable from the ex-
pected results. Real images are also transformed for com-
parison. Since there is no transformed image to compare,
we transform the image forward and backward �ve times
and �nd the errors with respect to the original image. Fig-
ure 4 shows the resulting images for both methods. Note
that the FFT method preserves the details better. Table 3
summaries the performance of the synthetic and real cases.
Real images do not give very outstanding results as syn-
thetic images do since they are not bandlimited.
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Figure 2. RMS error of a�ne transformation of synthetic

image. (Dotted line): Cubic method using two-pass decompo-

sition. (Solid line): Proposed FFT method using three-pass
decomposition

Method Synthetic pattern (� = 4) Lenna
Cubic 2-Pass -7.65 dB -18.27 dB
FFT 3-Pass -24.92 dB -20.18 dB

Table 3. Tabulated results of the simulations
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Figure 3. (top left): Original synthetic pattern. (top right):

Expected transformed pattern. (bottom left): Transformed pat-

tern using cubic 2-pass method. (bottom right): Transformed

pattern using proposed FFT 3-pass method.

Figure 4. (top): Original image. (middle): Image trans-

formed forward and backward using cubic 2-pass method. (bot-

tom): Image transformed forward and backward using FFT 3-

pass method.


