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ABSTRACT

In this paper a general and e�cient approach for
representing and classifying image sequences by Hid-
den Markov Models (HMMs) is presented. A consis-
tent modeling of spatial and temporal information is
achieved by extracting di�erent low level image fea-
tures. These implicitly convert the image intensities
into probability density values, while preserving the ge-
ometry of the image. The resulting so called image den-

sity functions are contained in the states of the HMM.
First results of applying the approach to the classi�ca-
tion of dynamic hand gestures demonstrate the perfor-
mance of the modeling.

1. INTRODUCTION

The �rst stage in preparing image sequences for Hidden
Markov modeling is the transformation of the spatio-
temporal image sequence into a pure time sequence.
Two possible principles can be found in the literature:

(I) All the spatial information of the image is de-
scribed by a single high level, property-based feature
vector, thus transforming the image sequence into a se-
quence of feature vectors (e. g. in [1, 2]). This method is
not universal, since it requires a-priori knowledge, and
it uses the exibility of the HMM only for the temporal
processing.

(II) For each image, a feature vector sequence is
generated by moving a vertical (horizontal) feature se-
lection window along the image in horizontal (vertical)
direction. The resulting low level feature vectors are
lined up for the whole image sequence (e. g. in [3, 4]).
That way, the HMM only has inuence on the mod-
eling of one spatial dimension resulting in asymmetric
behaviour and problems in image normalization.

The new approach described in this paper elimi-
nates the above di�culties using a symmetric spatial
modeling based on low level features allowing simple
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Figure 1: System overview

measures for normalization of image position and ori-
entation. The fundamental idea is to represent the
two-dimensional intensity function of an image (or the
average of a collection of similar images) with a two-
dimensional probability density function | the im-

age density function (IDF) | in a state of the HMM.
In this geometry preserving representation, coordinate
points of the image function correspond to those of
the IDF, whereas the intensity values of the image are
transformed to probability density values.

The overview in �g. 1 shows, that the system works
with spatially segmented grey level images as well as
unsegmented gradient images. The amount of data of
these images has to be reduced signi�cantly by rep-
resenting the images with so called (geometric) im-

age vectors and their attributes (see sec. 2). In the
next step, two possibilities are used to form feature se-
quences out of these image vectors, so that the regular
training algorithm of the HMM is forced to build inter-
nal IDF-representations of the images (see sec. 3).
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Figure 2: Initial placement of image vectors vij

2. IMAGE VECTORS AND ATTRIBUTES

2.1. Initial placing

To reduce the amount of data, the discrete image func-
tion f(n1; n2) = f(n) with the pixel dimensionsM�N

is represented by image vectors whose initial positions
form a regular K � L grid:

vinitij =

"
n
(i)

1

n
(j)

2

#
=

�
�n1(i� 1=2)
�n2(j � 1=2)

�
: (1)

The grid intervals are �n1 = N=K and �n2 = M=L

(see �g. 2). An additional attribute value nij is at-
tached to every image vector. The attribute nij con-
tains the average intensity of the image in the so called
neighborhood Nij of the image vector, which is de�ned
with the nearest neighbor rule using the Euclidian dis-
tance measure d:

Nij = fnjd(n;vij) < d(n;vkl)

for all k; l with k 6= i and l 6= jg; (2)

nij =
1

jNij j

X
n2Nij

f(n): (3)

jNij j is the number of pixels in the neighborhood of
vij .

2.2. Optimal placing

With the initial vector placement, the image informa-
tion is contained in the attributes nij and in the grid
intervals. To put more information in the individual po-
sitions of the vectors, they have to be placed in an opti-
mal way considering their attributes. This can be done
by concentrating the vectors iteratively in brighter im-
age areas using a variation of the k-means algorithm
[5]. Instead of clustering randomly positioned feature
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Figure 3: Initial and optimal image vectors with a non-
zero attribute in a spatially segmented grey level image
(11� 8 grid)

points, the task here is �nding an optimal represen-
tation of the regularily positioned image pixels taking
into account their randomly distributed intensities. Us-
ing the initialization in eq. (1), the iteration results in
the calculation of new image vectors at time t + 1 as
the speci�c centers of mass of the old neighborhoods at
time t. The complete optimization algorithm is:

1. initialization: v
(0)

ij = vinitij from eq. (1) implying

n
(0)

ij from eqs. (2) and (3);

2. iteration:

v
(t+1)

ij =
1P

n2N
(t)
ij

f(n)

X
n2N

(t)
ij

n � f(n) (4)

implying new n
(t+1)

ij from eqs. (2) and (3);

3. if d
�
v
(t+1)

ij ;v
(t)

ij

�
> � for all i; j repeat step 2,

else go to step 4;

4. optimal vectors and attributes at last time step
t = T � 1:

v
opt
ij = v

(T�1)

ij and (5)

n
opt
ij = n

(T�1)

ij : (6)

Figs. 3 and 4 show the initially placed and optimized
image vectors with a non-zero attribute for grey level
and gradient images respectively.

2.3. Vector normalization

The images can be made translational and rotational
invariant by normalizing the vectors using the moment
based centers of mass and orientation angles. The re-
sulting shifted coordinate systems are also shown in
�gs. 3 and 4. These normalization values have to be cal-
culated only on the �rst image of a sequence. All the
successive images are normalized relative to the �rst
image.
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Figure 4: Initial and optimal image vectors with a non-
zero attribute in a gradient image (11� 8 grid)

3. SEQUENCE FORMING

An image is transformed into a feature sequence by se-
quentially emitting all image vectors with a non-zero
attribute. That means these features are two-dimen-
sional and contain the image coordinates of their loca-
tion. The order of the feature emission within one im-
age can be chosen randomly because the HMM should
be able to collect all features of one or more complete

images to build one probability image representation.
The complete feature sequence is obtained by lining up
the feature sequences of successive images in an image
sequence. Two di�erent strategies of sequence forming
are applied which both force the HMM training algo-
rithm to approximate IDFs. They are later compared
with the so called C-sequence which contains each ini-
tial image vector just one time.

3.1. Repetition of initial image vectors

The so called R-sequence also consists of the initial
image vectors. But to represent more of the image
information, which is mainly contained in the vector
attributes, each feature vinitij is repeated a number of
times cij that is proportional to the value of the the
attached attribute nij . The training algorithm of the
HMM sees an emission at the location vinitij happen cij
times, and since cij is proportional to the average inten-
sity of the neighborhood Nij , it will approximate the
underlying image as an IDF. The number of repetitions
is normalized so that the sum of feature emissions of
each image is constant.

3.2. Usage of optimized image vectors

On the other hand, the so called O-sequence is con-
structed with the optimized image vectors voptij which
appear one time each. Since the optimized vectors con-
centrate around bright image areas, the HMM training

# action # action

1 go to the front 7 reset
2 go to the left 8 grab
3 go to the rear 9 release
4 go to the right 10 grab on the left
5 take this 11 grab on the right
6 no 12 stop action

Table 1: Gesture catalog

algorithm will collect more events around bright image
areas and give them a higher density value.

4. HMM AND TEST DATA DESCRIPTION

HMMs have been successfully applied in many �elds
such as speech [6] and more recently in handwriting
recognition [7]1. The used HMMs are semi-continuous
since those models are a good compromise between few
training data and accuracy of modeling [6, 5]. Semi-
continuous HMMs have a codebook of mixture density
functions (or prototypes) calculated for the whole train-
ing data. The covariance matrices of the prototypes are
diagonalized. Training and recognition are carried out
by the Viterbi algorithm.

The classi�cation is tested on image sequences con-
taining dynamic hand gestures. A catalogue of 12 dif-
ferent gestures was de�ned and is planned to be used
as a vocabulary in a visual dialog with a virtual ob-
ject world (see table 1). In the experimental setup, the
camera was mounted above a uniformly colored table
area looking downward to the right hand of the user.

Each of the 12 gestures was recorded 30 times and
stored as a single image sequence. All data was recor-
ded from only a single person. Each image sequence
contains 70 non-interlaced images at the European rate
of 50 images (�elds) per second. The �nal size of the
images was 192�144 pixels in Y UV -mode.

A color histogram based segmentation method cal-
culates the grey level images with a zero background
value out of the UV -components. The edge images are
obtained by applying a simple gradient operator to the
Y -component of the unsegmented image (see �gs. 3 and
4 for examples).

5. EXPERIMENTAL RESULTS

20 of the sequences of each gesture were used for the
training and the other 10 for recognition. The models

1
At this point the authors would like to thank their colleague

H.-J. Winkler since large parts of the HMM source code used

for this work could be derived from his HMMs for handwriting

recognition.



p C-seq. O-seq. R-seq. OR-seq. col.vecs.

8 41.14 9.02 14.55 18.71 31.59
16 16.89 5.23 11.97 8.64 14.17
32 19.24 6.59 16.82 6.89 8.18

Table 2: Error rates (%) for grey level images, di�erent
number of prototypes p, no normalization

t/1 tr/1 t/a tr/a
p O-seq. OR-seq. O-seq. OR-seq.

8 3.26 8.64 14.55 17.58
16 0.98 1.97 5.68 7.80
32 0.00 0.83 0.61 4.39

Table 3: Error rates (%) for grey level images, di�er-
ent number of prototypes p, best sequences for the re-
spective normalizations (t=translational, r=rotational,
1=relative to �rst image, a=absolute for each image)

used had p = 8, 16 and 32 prototypes and s = 2{15
states. All the results presented here are average values
over s = 5{15 states (the error rates stabilize with 5
states or more) and over all 12 gestures. The initial
image vectors were placed on a 6� 4 grid; vectors with
a zero attribute were discarded.

Table 2 shows the results for the grey level images
for di�erently formed feature sequences (see sec. 3) and
di�erent numbers of prototypes p without applying any
normalization. As a rule, the error rate decreases for an
increasing number of prototypes. The O- as well as the
R-method perform signi�cantly (up to 4 times) better
than the plain C-sequence. The best is the O-sequence;
the combination of the methods (OR-sequence) is even
slightly worse. The last column shows, that using the
attributes of the initial image vectors as 4-dimensional
column vector features (resulting in method (II) ex-
plained in the introduction, see [3, 4]) performs only
about half as well as our method.

If normalization methods are used (see table 3), the
error rate for the underlying test data goes down to
0%. Even if only the change of pure shapes in the
image sequence are used for classi�cation (that means
absolute translational and rotational normalization for
each image of the sequence), the combined OR-method
has a error rate of only 4.39%.

The results for gradient images show a similar ten-
dency but the absolute errors are less compared to
grey level images (see table 4). Here the combined
OR-sequences mostly lead to the best results; the re-
sults without normalization are now 4 times better than
those of the column vector method applied to gradient
images.

| t/1 tr/1 t/a tr/a |
p OR-seq. col.vecs.

8 3.03 0.83 8.41 10.23 28.64 16.44
16 2.05 0.00 2.20 4.32 6.14 46.29
32 1.59 0.00 0.08 0.15 2.88 6.14

Table 4: Error rates (%) for gradient images, di�erent
number of prototypes p, OR-sequences, di�erent nor-
malizations (abbreviations in table 3)

6. CONCLUSION

The results show that the concept of image density
functions as geometry preserving image representations,
which allow HMMs a consistent spatio-temporal mod-
eling, are superior to previous used methods. Above
that, they allow straight forward measures for image
normalization. Since only low level image features are
required, the approach is applicable to a wide range of
image sequence recognition tasks.
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