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ABSTRACT

An eyeglass-mounted camera system with wearable mul-
timedia computer (`WearCam') was recently proposed. In
particular, `WearCam' contains two miniature cameras: one
(wide-angle in landscape orientation) provides the overall
contextual information from the wearer's perspective, while
the other (telephoto, in portrait orientation) provides close-
up details, such as faces. This `bi-foveated' scheme was
found to work well within the context of a recently proposed
model of image motion characterized by a projective (ho-
mographic) coordinate transformation together with a gain
transformation. Applications of `WearCam' include per-
sonal safety (crime prevention and personal documentary),
perceptual intelligence/situational awareness (in the con-
text of personal wearable multimedia), and homographic
modeling (wearable, tetherless computer-mediated reality).
A pencigraphic image representation is presented where the
photometric response function of the camera is determined
to within a constant, and the registered images are assem-
bled into a photometric environment map, yielding an es-
timate, to within a constant scale factor, of the number of
photons of light coming from each angle, toward the wearer.

1. INTRODUCTION

The author's `wearable computer/personal imaging' inven-
tion (Fig 1) provides imagery from the perspective of the
wearer. The current realization of the apparatus comprises
two cameras built into a pair of ordinary eyeglasses (Fig 2).
Various realizations of the have been built (some alternate
embodiments appear in Fig 3).

`Personal imaging' is a �eld that is rich in signal process-
ing applications. Signals available from the author's current
apparatus comprise video from two cameras, wearable radar
(operating at 24.36GHz), biosensors (ECG, EMG, respira-
tion, skin resistance, signals pertaining to footsteps, etc.).
As an example signal-processing application for the per-
sonal safety device (PSD), consider the gunman who asks
for your wallet. Your PSD senses that your footsteps have
stopped, yet your heart rate has suddenly increased. Since
the heart rate jumped up without any apparent athletic ra-
tionale, the DSP in your PSD concludes that the scene (in
this case your assailant) is of interest, and devotes maxi-
mum bandwidth toward video capture, assuming that the
foveal portion of your view would probably contain some-
thing that you would desire to remember later.

THIS WORK SPONSORED, IN PART, BY HEWLETT
PACKARD RESEARCH LABS.

Figure 1: Evolution of author's wearable computer/personal imag-
ing invention. Large head-mounted CRT and separate inbound and
outbound communications antennas of the late 70s were awkward.
Author's waist-mounted television of the mid 80s was somewhat
more comfortable but not constantly visible. Small view�nders from
consumer video cameras of the late 80s made possible an eyeglass-
based system which later evolved toward author's current embodi-
ment built into ordinary eyeglasses.
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Figure 2: Current rig has two miniature cameras and display built
into ordinary eyeglasses. This bi-foveated scheme was found to be
useful in a host of applications ranging from crime-reduction (per-
sonal safety/documentar), to situational awareness and shared visual
memory.



Figure 3: Author (at left) sights multiple picture of self and others,
through imaging apparatus in front of group, to illustrate various
embodiments of online living/imaging.

A contribution of this paper is a simple method of \scan-
ning" out a scene, from a �xed point in space, by panning,
tilting, or rotating a camera, whose gain (iris, AGC, or the
like) is also allowed to change of its own accord (e.g. ar-
bitrarily). Photometric self calibration together with gain
estimates allows for an estimate, kq(x; y), which is linearly
proportional to the number of photons per second, q(x; y),
of light received from each incoming ray. The unknown
constant of proportionality, k, is constant over all incom-
ing light rays (e.g. a single scalar constant for the whole
composite image). Thus the emphasis here is on processing
video signals from WearCam.

Hartley demonstrated the simplicity and utility in es-
timating the calibration parameters of a camera by means
of rotating (yaw, pitch, roll but no translation) it about
its center of projection[1]. The assumption of zero parallax
may arise out of a deliberate control over camera motion (as
in Hartley's procedure). Alternatively, the zero-parallax as-
sumption is useful and important as a �rst step in the more
di�cult problem of estimating depth and structure from a
scene (�rst modeling the motion as a projective coordinate
transformation, and then estimating the residual epipolar
structure or the like[2][3][4][5]). In our application, that of
generating an environment map, zero-parallax is assumed.

The problem of assembling multiple pictures of the same
scene into a single image commonly arises in mapmaking
(with the use of aerial photography) and photogrammetry[6],
where zero-parallax is also generally assumed. Fully auto-
matic featureless methods of combining multiple pictures
have also been previously proposed[7][8]. The emphasis
of this work was on subpixel image shifts; the underlying
assumptions and models (a�ne, and pure translation, re-
spectively) were not capable of accurately describing more
macroscopic image motion (arising from large changes in
camera orientation, etc.).

In motion-estimation work, the commonly-used a�ne
model fails to capture the essence of the chirping and keyston-
ing e�ects encountered in a panning or tilting camera (es-
pecially important to `WearCam' because of its use of an
extremely wide-angle contextual camera). hence the fea-
tureless method of estimating the parameters of a projec-
tive group of coordinate transformations was �rst proposed
in [9], and later in [10][11]. The earlier method of [9] [10]
di�ers from [11] in that, in the former, a simple and di-

rect method is provided that does not require a nonlinear
optimization strategy.

Fully automatic methods of seamlessly combining mul-
tiple pictures of the same scene, where di�erently exposed
pictures are combined to extend dynamic range have been
proposed[9][12].

The output of a typical camera, f , is not linear with re-
spect to the incoming quantity of light, q. A common model
for the nonlinearity, f , is the classic response curve[13]:

f(q) = �+ �q
 (1)

Methods to estimate the unknown response curve from pic-
tures that di�er only in exposure, have been proposed[14].
These methods are based on computing the joint histogram
between di�erently exposed pictures, and then estimating
the function g(f), de�ned by

g(f(q(x; y))) = f(kq(x; y)) (2)

where q(x; y) is the quantity of light received in a �rst expo-
sure, and kq(x; y), the quantity of light received in a second
exposure, is k times that of the �rst exposure.

1.1. Automatic Gain Control (AGC)

If what is desired is a picture of increased spatial extent or
spatial resolution, the nonlinearity is not a problem, so long
as it is not image dependent. However, most low-cost cam-
eras (especially miniature devices suitable for mounting in
eyeglasses) have a built in automatic gain control (AGC),
electronic level control, auto iris, or some other form of au-
tomatic exposure1 which cannot be disabled. This means
that the unknown response function, f(q), is image depen-
dent, and will therefore change over time, as the camera
framing changes to include brighter or darker objects.

Recently a joint estimation of the projective coordinate
transformation and gain was proposed [12]. Using this pro-
jective+gain estimator, it turns out that AGC, rather than
being an impediment, becomes an advantage, providing ad-
ditional information about the scene (extended dymanic
range measurement capablility) as well as the camera. This
is especially important for WearCam contributing to the
hands-free nature of the apparatus, so that one need not
make any adjustments when, for example, entering a dimly
lit room from a brightly lit exterior.

If we extend the concept of \motion estimation" to
include both `domain motion' (motion in the traditional
sense) as well as `range motion' (Fig 4), we may think of
the projectivity (pan, tilt) as contributing to the former,
while the gain (e.g. e�ects of AGC) to the latter.

2. BACKGROUND: JOINT ESTIMATION OF

DOMAIN MOTION AND `RANGE MOTION'

As in[10], we consider one dimensional \images" for pur-
poses of illustration, with the understanding that the actual
operations are performed on 2-D images. The 1-D projec-
tive+gain group is de�ned in terms of the \group2" of pro-
jective coordinate transformations, taken together with the

1I refer to all of these methods of automatic exposure control
as AGC, whether or not they are actually implemented using

gain.
2To be strictly mathematically correct, the projective group

is written (ax+ b)=(cx+ d), but d 6= 0 in practical engineering

problems (physically \reasonable" camera motion), so we may
divide by d.



f(q(x))

x

‘Domain motion’

‘R
an

ge
 m

ot
io

n’

f(q(x))

x

Panning to left shows highlight detail

Panning to right shows shadow detail

Figure 4: Generalization of motion to include motion in the
range as well as the domain of the image function: `Domain
motion' is motion in the traditional sense, in this case, arising from
the camera panning to the right. `Range motion' refers to a tone-
scale adjustment, in this case arising as a consequence of the fact that
the camera is panning to point more and more into the darkness of an
open doorway, causing the automatic gain control (AGC) to increase
the exposure. Thus there is some upwards `motion' of the image
function as well as leftwards motion. Just as panning the camera
across causes information to leave the frame at the left, and new
information to enter at the right, increased exposure causes highlight
detail to leave from the top and new shadow detail to enter from the
bottom.

one-parameter group of gain (image darkening/lightening)
operations:

pa;b;c;k � f(q(x)) = gk(f(q(
ax+ b

cx+ 1
))) = f(kq(

ax+ b

cx+ 1
)) (3)

where gk characterizes the gain operation.
The law of composition is de�ned as: (pabc; pk)�(pdef ; pl) =

(pabc � pdef ; pk � pl) where the �rst law of composition on
the right hand side is the usual one for the projective group
(a subgroup of the projective+gain group), and the sec-
ond one is that of the one-parameter gain (image lighten-
ing/darkening) subgroup.

Two successive frames of a video sequence are related
through a group-action that is near the identity of the
group, thus one may think of the Lie algebra of the group
as providing the structure locally. As in previous work[10]
an approximate model which matches the `exact' model in
the neighbourhood of the identity is used.

For the `gain group' (which is a one parameter group
isomorphic to addition over the reals, or multiplication over
the positive reals), the approximate model may be taken
from Eq 1, by noting that

g(f(q)) = f(kq) = �+ �(kq) = k

f + 1� �k

 (4)

This equation suggests that linear regression on the
joint histogram between two images will provide an esti-
mate of � and , while leaving � unknown, which is con-
sistent the fact that the response curve may only be deter-
mined up to a constant scale factor[12].

From (4), using the (generalized) brightness change con-
straint equation[12] and minimizing the sum of squared er-
rors yields a linear solution in substituted variables (that
are easily related to the variables of the approximate model):2
664
P

x4F2x

P
x3F2

x

P
x2F2x �

P
x2FFx �

P
x2FxP

x3F2x

P
x2F2x

P
xF2x �

P
xFFx �

P
xFxP

x2F2
x

P
xF2x

P
F2x �

P
FFx �

P
FxP

x
2
FFx

P
xFFx

P
FFx �

P
F2 �

P
FP

x2Fx

P
xFx

P
Fx �

P
F �

P
1

3
775
"

(bc � a)c
a� bc

b

k

1 � �k

#
=

�

�P
x
2
Fx(F + Ft);

P
xFx(F + Ft);

P
Fx(F + Ft);

P
F (F + Ft);

P
(F + Ft)

�
T

where F (x; t) = f(q(x)) at time t, Fx(x; t) = (df=dq)(dq(x)=dx),
at time t, and Ft(x; t) is the frame di�erence of adjacent
frames.
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Figure 5: A rotating uncalibrated camera (a) depicted as two
separate cameras. Calibration constants, z1 and z2 are equal but
distinguished for clarity. Likewise, p1 = p2 . (b) Appropriate coor-
dinate transformation simpli�es problem to joint estimation of pure
translation and gain change.

3. THE HARTLEY CONSTRAINT

For 2-D images in 3-D, there are nine degrees of freedom, so
the approximate model (using the feedback loop of [10] to
obtain solution of the `exact' motion model) must have at
least 9 parameters. Constraining the parameters of the pro-
jective group through estimation of the calibration matrix[1],
to the three rotation parameters and one gain parameter,
will reduce sensitivity to noise, while at the same time, bet-
ter �tting the true underlying phenomena (camera rotation
and AGC) that gave rise to the image motion. For 1-D
images, a representation for the rotation+gain group is:

[e�; 0; 0; k] (5)
An uncalibrated camera (Fig 5(a)) is assumed.

Proposition 1 The set of transformations governed by pure
rotation (Fig5 (a)) and gain transformations forms a group
(5). Furthermore, any such transformation may be ex-
pressed as a conjugation with both a calibration matrix and
gain adjustment operation.

Proof: From Fig5 (a), x2
z2

= tan(arctan(x1�p1
z1

) � �) + p2
z2
.

Thus,

x2 =

z cos �+p sin �

z cos ��p sin �
x1 �

(z2+p2) sin �

z cos ��p sin �

sin �

z cos ��p sin �
x1 + 1

(6)

The same coordinate transformation results if we conjugate
a rotation operator, represented by [cos �;� sin �; sin �; cos �]
with calibration matrix [k; p; 0; 1] (multiplying the three
matrices). The complete transformation is obtained by fol-
lowing this coordindate conjugation with conjugation by a
gain adjustment operation. 2

The problem of estimating the parameters of this (5)
group may be greatly simpli�ed by considering a coordi-
nate transformation operator, T , de�ned by t = T (x) =
z arctan((x � p)=z). The geometric intuition for T comes
from Fig 5(b), where t is the distance along a circle of radius
equal to the principal distance, z.

Proposition 2 The transformation T reduces the group
parameter estimation problem to one of joint estimation of
pure translation and gain change.

Proof: consider two images g(f(q((a2x+ b2)=(c2x+1)))) =
f(k2q(x2)) and h(f(q((a3x+b+3)=(c3x+1)))) = f(k3q(x3)).
Substituting into (6) yields translation t = t3�t2 = z�, and
the gain change k = k3=k2. 2 This means that a simple
Fourier-based approach may be used to estimate �[15] and
k[14], which is equivalent to using a family of projective
chirps, rather than ordinary sines and cosines, as analysis
primitives.
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Figure 6: Signal processing approach for bi-foveated `WearCam'.
Note also that the spatial coordinates are propagated according to
the projective group's law of composition while the gain parameters
between the wide-camera and foveal-camera are not directly coupled.
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Figure 7: Image compositing to extend both dynamic range and
spatial extent. (a) Exterior door to building is brightly illuminated:
camera's AGC results in a dark exposure. (b) As camera pans to
right, pointing into dark interior, AGC causes gain to increase, re-
vealing details inside. (c) Image composite from a sequence of 40
frames. Because the result is a oating-point image of much greater
dynamic range, locally non-monotonic processing must be performed
to adequately print the image. Note that we can see clearly both the
building interior and the white sign on the exterior door.

4. APPLICATION TO REAL IMAGES

To construct a single oating-point image of increased spa-
tial extent and increased dynamic range, each pixel of the
output image is constructed from a weighted sum of the
images whose coordinate-transformed bounding boxes fall
within that pixel. The weights in the weighted sum are the
so-called `certainty functions', which are found by evaluat-
ing the derivative of the corresponding `e�ective response
function' at the pixel value in question[14].

In order to print a picture of such dynamic range it is of-
ten necessary to relax the monotonicity constraint, and per-
form some local tone-scale adjustments[16]. (See Fig 7(c)).

5. BI-FOVEATION

Signal processing with respect to bi-foveated cameras is a
special consideration. In particular, since the geometry of
one camera is �xed (in epoxy or the like) with respect to
the other, there exists a �xed coordinate transformation
that maps any image captured on the wide camera to one
that was captured on the foveal camera at the same time.
Thus when there is a large jump between images captured
on the foveal camera | a jump too large to be considered
in the neighbourhood of the identity | one may look to
the wide camera for contextual reference (greater overlap),
apply the estimation between the two wide images, and
then relate these to the two foveal images. (The procedure

Figure 8: With a very small number of frames and little overlap, a
more expressive composite (showing image boundaries more clearly)
may be constructed. Here, extreme perspective is used to juxtapose
the author's outstretched arm (lower left) at the deli counter with
the surveillance camera (upper right).

is illustrated in Fig 4).
Image composites with very little overlap may be used

for their expressive/narrative qualities (as in the \Shoot-
ingBack" documentary, Fig 5
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