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ABSTRACT

In this a paper a quadtree based method is proposed for
classifying blocks of samples in image subbands. Classi�ca-
tion of blocks of subband samples according to their energy
and variable bit allocation within the subsequent classes
has demonstrated considerable gains in coding e�ciency.
The gains due to classi�cation increase as smaller blocks
are used; however, so do the overheads for transmitting the
classi�cation information. The quadtree based method pro-
posed in this paper allows for more e�cient classi�cation by
using variable-sized blocks in order to maximize the classi-
�cation gain, while maintaining a limit on the classi�cation
overheads. Using an e�cient quantization scheme such as
ACTCQ [5] (Arithmetic and Trellis Coded Quantization),
we have been able to demonstrate competitive coding re-
sults at low bit-rates.

1. INTRODUCTION

Subband coding [1] has proven to be an e�cient method
of coding images at low bit-rates. In subband coding, the
image is �rst decomposed into a number of critically sam-
pled subbands and then quantized and transmitted to the
decoder. In a subband decomposed image, the di�erent
subbands usually contain vastly di�erent amounts of en-
ergy. This property of subbands is utilized in coding. The
bands which contain more energy are quantized using a �ner
quantizer and those bands which contain less energy are
quantized more coarsely.
The choice of �ne and coarse quantizers corresponds with

the number of bits used by each quantizer. Usually an
optimization algorithm [3] is used to allocate bits to each
subband according to the energy in that subband and the
rate-distortion characteristics of the quantizers being used.
In e�ect, the optimization algorithm minimizes the Mean-
Squared-Error (MSE) of the reconstructed image for a given
overall bit-rate. In this fashion the non-uniform distribution
of energy across the subbands is used to achieve compres-
sion. However, a close examination of a typical subband
decomposed image reveals that the spatial distribution of
energy within the subbands is also far from uniform.
Most of the energy within subbands is con�ned to areas

corresponding to edges and strong textures in the original
image. This non-uniformity within the subbands can be ex-
ploited to make coding more e�cient. Chen and Smith [2]
proposed such a scheme for coding of images using the dis-
crete cosine transform (DCT). In their scheme, the image
is divided into a number of equal-sized square blocks which
are classi�ed according to their energy. Each DCT coe�-
cient within each class is then assigned a number of bits
according to the average energy of the particular transform
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coe�cient in that class and the overall bit budget.
The Chen-Smith type of classi�cation can be easily

adapted for use in a subband coder. Each subband is di-
vided into a number of equal-sized blocks which are classi-
�ed according to their energies. An optimization algorithm
is then used to select an appropriate quantizer for each class
of each of the subbands.
In the Chen-Smith type classi�cation, the classes are cho-

sen such that they are equally populated. However, this is
non-optimal and recently better classi�cation schemes have
been devised [6], [8]. Joshi et al. [4], provide a thorough
study of a number of classi�cation schemes for subband
coding.
Although classi�cation provides considerable coding gain,

this gain comes at a cost. The decoder needs to be made
aware of the classi�cation information. This is normally
done by transmitting a classi�cation table which indicates
the classes to which the blocks of subband samples belong.
Using smaller sized blocks results in a higher coding gain,
but it also increases the amount of classi�cation information
which needs to be transmitted.
The choice of an appropriate block size is a trade-o� be-

tween the coding gain resulting from classi�cation and the
amount of classi�cation information. Several methods for
the reduction of classi�cation information have been pro-
posed in the literature [4]. However, at low bit-rates, the
classi�cation information can still amount up to 20% of the
total bit budget.
The scheme proposed in this paper aims to provide more

e�cient classi�cation by using smaller blocks where re-
quired (in areas of high activity) and larger blocks in other
areas.

2. THE PROPOSED SCHEME

As mentioned previously, the energy in the subbands is not
distributed uniformly. In a typical subband decomposed im-
age, there are small areas of high activity which correspond
to edges and strong textures, and large areas with little ac-
tivity corresponding to the smoother areas in the original
image. In this paper we attempt to exploit this property by
allocating smaller block sizes over the non-uniform (high
activity) areas of the subbands and larger block sizes in
the areas of uniformity (low activity). This added degree
of adaptivity allows for more e�cient classi�cation of the
subband samples for a given classi�cation bit budget.
In the case of non-uniform block sizes, the decoder also

needs to be made aware of the sizes and the locations of the
blocks used. The quadtree [7] was selected as an e�cient
method of encoding the blocking scheme. In the following
sections, we will describe the algorithms for generating the
quadtrees and the methods of encoding the quadtrees.

2.1. Generating the Quadtrees

Similar to the binary-tree, the quadtree is a tree structure.
However, instead of nodes branching o� to two children as



is the case for a binary tree, the quadtree's nodes branch
o� to four children.
In our application, the root of the quadtree corresponds

to the entire image (or a particular subband) and each node
which descends from the root corresponds to a square block
within that image. The quadtrees used in this paper are not
balanced and hence, to encode them one bit must be sent
along for each node in the tree to indicate whether or not
that node is split.
Now we will examine how the quadtrees are generated.

The aim of our quadtree generation process is to split an
image (or subband) into small subblocks, each of which have
roughly uniform properties. The algorithm used in this case
is based on growing the quadtree one step at a time, while
splitting a block in each step of the growth. The choice of
which block is to be split is made on the basis of an objective
criterion, which depends on the degree of uniformity within
the block as well as the size of the block. We will refer to
this criterion as Splitting Gain (SG).
In this paper, we de�ne the Splitting Gain in two di�er-

ent ways. In the �rst de�nition, we use the notion of the
classi�cation gain for a non-stationary source [4] and de�ne
the Splitting Gain as follows:

SG =
Np�
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where Np is the number of samples in the parent block and
�2p the sample variance of the parent block. The �2i 's in this
equation represent the variances of the four blocks which
would be formed as a result of splitting the parent block.
In subsequent sections, we will refer to this de�nition of the
splitting gain as De�nition A.
Looking at the problem from a slightly di�erent perspec-

tive, we may also de�ne the Splitting Gain based on how
well the energy of the sub-blocks is represented by their
parent. That is, if the energy (standard deviation) of all
sub-blocks is similar to that of the parent, we may wish
to leave that particular block unsplit. On the other hand
if some subblocks have energies which di�er greatly from
that of the parent block, we would wish to split the block.
This de�nition is closer in line with that of conventional
quadtree based image coding. In this case, the Splitting
Gain is de�ned as follows:

SG =
Np
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We will refer to this de�nition as De�nition B.
The algorithm for growing the quadtree is as follows:

1 Initialize the quadtree root to the entire image (or
subband).

2 Split the root into 4 equal sized blocks.

3 Calculate the Splitting Gain (SG) for each block.

4 Split the block with the largest Splitting Gain into
4 blocks.

5 Calculate Splitting Gain for the new blocks.

6 Repeat from Step 4 until a maximum number of
blocks is reached.

We should note that when quadtrees are utilized in a
coder, the structure of the quadtree needs to be made
known to the decoder. Hence, the number of bits used to
encode the quadtree can be important.
Once the quadtree has been generated using De�nition A

or De�nition B, it is simply encoded using one bit for each
node in the quadtree to indicate whether or not it has been
split.
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Figure 1. 22-band subband decomposition.

Since our algorithm for generating the quadtree is based
on successive splitting of the blocks, it is appropriate to
evaluate the length of the quadtree in terms of the number
of block splits performed:

QuadtreeLength(bits) = 4Ns + 1: (3)

where Ns is the number of splits performed on the quadtree
root.
In cases where a minimum block size has been set, the

leaf nodes of that size will not require an additional bit
since they are always left unsplit. Therefore equation (3)
only sets an upper limit on the number of bits required to
encode the quadtree.

2.2. Using the Quadtrees in a Subband Coder

So far we have explained how quadtrees can be generated
in order to split an image into blocks with uniform activ-
ity levels (as measured by variance or standard deviation).
Now we will take a look at how this concept can be utilized
in a classi�cation based subband coder.
The subband coder used in this paper relies on a 22-band

decomposition as used in [4], which is shown in Fig. 1.
Joshi et al. [4], have experimented with a number of clas-

si�cation schemes. The most successful of these schemes is
based on classifying equal-sized blocks (2x2 for bands 0 to
6 and 4x4 for bands 7 to 21) into one of four classes within
each subband. Two algorithms named Maximum Classi�ca-
tion Gain and Equal Mean-Normalized Standard Deviation
(EMNSD) are proposed for classi�cation. They have shown
that these algorithms perform almost equally well and that
they outperform the Chen-Smith [2] type of classi�cation.
Unlike Chen-Smith classi�cation, both of these algorithms
result in classes with unequal populations.
Joshi et al. [4], have also devised methods of reducing the

classi�cation information which needs to be sent along by
exploiting various dependencies both between and within
the classi�cation maps of the subbands. However, despite
the reductions, the classi�cation information still comprises
a large portion of the total bit-rate. With the use of the
quadtree structures described in the previous section, we
aim to reduce this overhead through a better, adaptive
choice of block sizes.
The simplest method of utilizing the quadtrees in this

scheme would be to generate a quadtree for each subband
and then perform the classi�cation accordingly. However,
in that case, the cost of encoding the quadtrees themselves
can become prohibitive. A typical quadtree (with around
400-500 blocks) used for a subband can contribute around
0.002 bpp to the overall bit-rate for a 512x512 pixel image.
Thus encoding 22 such quadtrees would take up around 0.04



bpp which is quite expensive when the total bit budget is
around 0.5 bpp or less.
The smallest four subbands (subbands 0-3) require at

most 512 bits to classify them into 4 classes of 2x2 blocks.
This is equivalent to a contribution of approximately 0.002
bpp to the total bit-rate which is hardly worthwhile at-
tempting to reduce. On the other hand, the higher fre-
quency subbands 10-21 usually contain very little energy
and in our range of target bit-rates are mostly quantized to
zero. The subbands which interest us the most are subbands
4-9 where the majority of the classi�cation information is
required.
We examine 3 di�erent methods for incorporating the

quadtrees into the subbands classi�cation:

� Method 1: Subbands 0-3 are divided into 2x2 sam-
ple blocks and classi�ed. A single quadtree is gen-
erated on the original (512x512) image, and scaled
down appropriately for use in subbands 4-21. The
minimum block size in the quadtree is limited to
16x16 pixels which corresponds to 2x2 samples in
subbands 4-6 and 4x4 samples in subbands 7-21
after appropriate down-scaling.

� Method 2: Design a quadtree for each of the sub-
bands 4-9. Uniform sized blocks (2x2 samples)
used for subbands 0-3. Subbands 10-21 will use
the same quadtree as subbands 7,8 or 9 depending
on their orientation. That is, the diagonal bands
(subbands 18 and 21) use the quadtree generated
for subband 9, The vertical bands (14,15,16,17 and
20) use the same quadtree as subband 8 and so on.

� Method 3: Design a quadtree for each of the sub-
bands 4,5 and 6. Subbands 0-3 will be divided into
2x2 blocks as before. Subbands 7-21 will use scaled
up versions of the quadtrees for subbands 4,5 or 6
depending on their orientation (determined as in
Method 2).

Figure 2 is an example of a quadtree (of size 421
blocks) generated from the original (512x512) Lena image
by Method 1 using De�nition A of Splitting Gain. The
quadtree has been superimposed onto the original image to
show where the splits have been made.
In the following sections, we provide a more detailed de-

scription of the subband coder and compare the various
methods of generating and using the quadtrees.

3. THE SUBBAND CODER

The subband coder used to demonstrate the quadtree based
classi�cation is very similar to the coders used in [4] and [5].
The quantizer used is the Arithmetic and Trellis Coded

Quantizer (ACTCQ) described in [5]. At the heart of the
ACTCQ system, lies a scalar quantizer with uniform thresh-
olds. The codewords of the scalar quantizer are divided into
a number of subsets corresponding to di�erent states of the
trellis. The Viterbi algorithm [12] is then used to choose
the trellis path which minimizes the distance between the
quantizer's inputs and its outputs. An arithmetic coder is
used to encode the trellis codewords. For a more detailed
description of the ACTCQ system, refer to [5].
ACTCQ and other similar quantizers such as ECTCQ

[9], have demonstrated excellent rate-distortion perfor-
mance for the quantization of Generalized Gaussian (GG)
sources. The performance of these quantizers makes
them ideal candidates for use in a subband coder. Op-
erational rate-distortion curves for Generalized Gaussian
sources with di�erent shape parameters (in this case
0.5,0.6,0.7,0.8,0.9,1.0,2.0) are generated and stored for sub-
sequent use by the bit allocation algorithm.

Figure 2. Quadtree generated using Method 1A and
superimposed onto the Lena image

Once the subbands are divided into blocks (using
quadtrees or equal-sized blocks), the blocks within each sub-
band are classi�ed into four classes. The classi�cation algo-
rithm used is the Equal Mean-Normalized Standard Devia-
tion (EMNSD) classi�cation as described in [4]. Each class
in each subband is modeled as a realization of a General-
ized Gaussian source whose variance and shape parameter
are estimated.
An optimal bit-allocation algorithm is used to allocate

the bit-budget among the classes in the di�erent subbands.
The bit allocation algorithm used in this paper is that of
Westerink et al. [3]. This algorithm is a greedy (gradient
based) algorithm which starts by allocating zero bits to all
sources and then increases the bit-rate of the sources one
at a time until the bit budget has been exhausted.
Once the bit-allocation is completed the classi�cation

maps are encoded and transmitted to the decoder. As de-
scribed in [4], a number of methods are used to reduce the
classi�cation information. These methods can be summa-
rized into the following 3 points:

1 The classi�cation maps of subbands where all
classes are allocated zero bits, need not be trans-
mitted.

2 If more than one class in a particular subband has
been allocated zero bits then these classes can be
combined together into one class.

3 The classi�cation tables are entropy coded using
conditional probabilities. The symbol probabili-
ties are conditioned on the classi�cation maps of
other subbands as well as the class index of adja-
cent blocks. In this fashion, interband and intra-
band dependencies are exploited.

The �nal step in coding is the quantization of the subband
samples. After the ACTCQ has completed the quantization
of all subband samples, the encoded �le sizes are measured
and used to determine the bit rate of the coder.

4. RESULTS

The subband coder described in the previous section is used
to compare the performance of the various quadtree schemes
described in section 2 with the performance of the system
using equal-sized blocks as in [4].
The �lters used in the subband coder are Antonini et al.'s

7-9 tap perfect reconstruction �lter pair [10] and Johnston's
32D (32-tap) �lter [11]. For target bit-rates below 0.3 bpp,
the 7-9 tap �lter pair provides better performance both in
perceptual and PSNR terms. The short �lter lengths result
in less noticeable ringing around the edges at low bit-rates.



Method 1 Method 2 Method 3

SG De�nition A 34.46 34.53 34.61
SG De�nition B 34.31 34.38 34.44
Uniform Sizes 34.32

Table 1. PSNR (dB) for various methods of encod-
ing Lena at 0.25 bpp

However, the 32-tap �lter gives slightly better results at
around 0.3 bpp and higher. Thus, the subband �lters are
selected in each case depending on the target bit-rate.
Coding results at a bit-rate of 0.25 bpp for the Lena image

(512x512 pixels, 256 grey levels) are listed in Table 1. We
have observed that quadtrees of around 400-500 blocks lead
to the best results in all methods and, hence, have used
these sizes in this experiment. The allocation of the bit-
rate between the classi�cation and quantization has been
\tweaked" so that the overall bit rate is as close as possi-
ble to the target bit-rate. Normally, this is not necessary;
however, in this case, it is needed to enable meaningful com-
parisons to be made among the various methods.
The columns in Table 1 correspond to the di�erent meth-

ods of using the quadtree (see section 2.2), while the rows
correspond to the de�nition of Splitting Gain (SG) used
in the generation of the quadtree (see section 2.1). It is
clear that De�nition A of the Splitting Gain produces bet-
ter results regardless of the quadtree being used. This is not
surprising, since this de�nition closely follows the concept of
classi�cation gain. It can also be observed that Method 3 of
using the quadtree produces the best results. Method 3 is a
good compromise between Method 1 (where one quadtree is
generated for all subbands) and Method 2 (where a quadtree
is generated for each of subbands 4,5,6,7,8 and 9).
Method 3A (quadtrees generated according to Method 3

and De�nition A of the splitting gain) results in a PSNR
improvement of almost 0.3 dB over the uniform block-size
scheme of [4], which is a small but signi�cant improvement.
We should also note that in Method 3A the classi�cation
overhead (including the quadtrees) amounted to slightly
over 0.02 bpp which is about half of that reported in [4].
This reduction in the classi�cation information e�ectively
leaves the quantizers with more available bits.
As the bit-rate increases the improvement due to the use

of quadtrees becomes less signi�cant. At a bit-rate of 0.5
bpp, the advantage of Method 3A over the uniform block
sized scheme is around 0.08 dB which is almost insigni�cant
(37.96 dB PSNR for Method 3A compared to 37.88 dB [4]
for uniform block sizes). At this bit-rate other quadtree
based methods demonstrate almost no advantage over the
equal block-sized scheme. The classi�cation overhead for
Method 3A at 0.5 bpp is 0.042 bpp which is 0.01 bpp less
than the overheads for equal sized blocks. At bit-rates
above 0.5 bpp the gain due to quadtrees continues to di-
minish as the classi�cation information comprises an in-
creasingly smaller portion of the total bit-rate.

5. CONCLUSION

In this paper, we have used a quadtree based classi�cation
scheme for a subband coder. We have experimented with a
number of di�erent methods for the generation of quadtrees
and incorporated them into a subband coder. It has been
shown that De�nition A of the Splitting Gain is an appro-
priate measure for use in generating the quadtree.
It has also been shown that Method 3 of using the

quadtrees in the subband coder provides a good compro-
mise between adaptivity of the quadtrees and the amount
of information used in encoding individual quadtrees. The
combination of Method 3 and De�nition A of the Splitting
Gain (referred to as Method 3A) results in an improve-

ment of almost 0.3 dB PSNR over the uniform block based
method of [4] at bit rates around 0.25 bpp.
This improvement is due to the reduction of the classi-

�cation information which needs to be transmitted. For
bit-rates below 0.3 bpp, this reduction ensures that a larger
portion of the total bit budget is made available to the
quantizers. As a result, improvement is quite noticeable in
the quality of the coded image at these low bit-rates.
As the bit rate increases beyond 0.3 bpp, the gain due

to the use of quadtrees becomes less signi�cant. It is no
longer noticeable at 0.5 bpp and beyond. This is due to the
fact that the classi�cation information comprises a smaller
portion of the bit budget and, hence, has a smaller e�ect
on the overall performance of the coder.
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