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ABSTRACT

This paper proposes a new adaptive source-channel
coding scheme in the context of subband coding. We
�rst express the total mean-squared distortion su�ered
by the source in terms of source and channel distor-
tions of the subbands. We then minimize this total
distortion by an appropriate choice of source and chan-
nel coding rates for the subbands. This corresponds
to casting the conventional bit allocation problem in
a joint source-channel coding context. The choice of
rates depends on the state of the physical channel,
modeled by a binary symmetric channel (BSC). We
then use a �nite state Markov model for a fading chan-
nel to generalize results obtained for the BSC. This re-
sults in a joint source-channel coding scheme that is
optimized to the current state of a fading channel.

1. INTRODUCTION

Shannon's separation principle establishes the optimal-
ity of separate design of source and channel coders,
and states that total distortion is essentially limited to
the source coding distortion as long as the rate of the
source coder is less than channel capacity. This how-
ever, is an asymptotic result, and real-world systems
bene�t through joint design of the source and channel
coders, given knowledge of the channel. The aim of
a joint source-channel coding approach is to optimally
allocate bits between the source and channel coders to
minimize total distortion, while satisfying a constraint
on the total rate.

Several approaches for joint source-channel coding
have been proposed in the literature. Modestino et.
al illustrated the advantages of source-channel cod-
ing using the DCT in [1] extending their earlier work
using DPCM coding. Joint source-channel coding of
synthetic sources using vector quantization combined
with Rate Compatible Punctured Convolutional codes
is addressed in [2]. A joint source-channel decoding

approach in the form of MAP decoding for exploit-
ing residual redundancy in images transmitted over
channels with memory has been recently addressed in
[3]. More recently, we have become aware of an ap-
proach towards joint source-channel subband coding
of scalable video [4] that is similar in spirit to the work
presented in this paper. Ruf and Modestino [5] use
bit-sensitivity analysis to compute operational rate-
distortion curves and also provide information-theoretic
bounds on performance.

The problem of rate allocation i.e, quantizing sub-
bands at di�erent rates in order to minimize over-
all source coding distortion, given a constraint on the
source rate has been studied extensively [7, 8]. When
a subband coded source is transmitted over a channel,
it is also logical to protect the subbands di�erently
against channel errors since they have varying impor-
tance in the reconstruction of the signal at the receiver.
One way to accomplish this unequal error protection
(UEP) is by allocating di�erent channel coding rates
to the subbands. In this formulation presented in sec-
tion 2, each of the subbands is coded and protected
independently, constrained however, by an overall bit-
rate. We illustrate the optimal allocation of source and
channel coding rates for the di�erent subbands that
minimizes the overall distortion.

In section 3,we propose a method that chooses these
rates to minimize the overall distortion, while obeying
an overall rate constraint when the channel is a BSC.
We show that this problem is analogous to the clas-
sical bit allocation problem, applied now on the total
rate-distortion (both source and channel distortions)
curves. The allocation naturally depends on the bit
error rate (BER) of the channel, whose knowledge is
assumed to be known at the transmitter. A wireless
channel is characterized by temporal variations that
manifest themselves in the form of fading. This is
due to multiple transmission paths arriving at the re-



ceiver, with random phase di�erences. A fading chan-
nel can be modeled using a �nite-state Markov model
[10] where each state is modeled by a BSC with a dif-
ferent BER. In Section 4, we extend our method to a
general fading channel by choosing an optimal rate al-
location for each state of the channel. Advantages of
this adaptive scheme are demonstrated through simu-
lation experiments in Section 5.

2. PROBLEM FORMULATION

The problem of jointly choosing the source and chan-
nel coding rates for a source has been addressed from
various perspectives. We are motivated by [2] where
the authors propose an optimal source-channel cod-
ing scheme for a vector quantized source protected us-
ing convolutional codes and transmitted over a fading
channel. In this paper, we solve the rate allocation
problem in a subband coding framework.

Consider a source that is decomposed into M sub-
bands. When the subband �lters are orthogonal, the
total distortion in the source can be expressed as the
sum of the distortions in the individual subbands [7].
(FIR linear-phase �lters also satisfy this property ap-
proximately.)

D =

MX

i=1

Di (1)

Each subband su�ers distortion due to quantization at
the source coder, and due to errors introduced by the
channel in the transmitted codewords. Therefore, the
total distortion is a function of the source coding rate
as well as the channel coding rate (degree of protec-
tion).

Di = Di(Rs;i; Rc;i) (2)

Rs;i and Rc;i denote the source and channel coding
rates for the ith subband respectively. Under the con-
ditions that the source codewords satisfy the centroid
condition and that the channel errors are independent
of the source codewords, the distortion may be decom-
posed as [2, 6]

Di(Rs;i; Rc;i) = Ds;i(Rs;i) +Dc;i(Rc;i) (3)

where Ds;i(Rs;i) and Dc;i(Rc;i) are distortions in the
ith subband due to the source coder and channel, re-
spectively. Therefore, the total distortion su�ered by
the source under these assumptions is

D =

MX

i=1

Ds;i(Rs;i) +

MX

i=1

Dc;i(Rc;i) (4)

The objective is to choose f(Rs;i; Rc;i); i = 1; :::;Mg
such that

D is minimized, and
1

M

MX

i=1

Rs;i

Rc;i

� R (5)

.

3. SOLUTION FOR A BSC

Consider the ith subband. The rate-distortion curve
for this subband may be computed if the subband
is modeled appropriately. In practice, an operational
rate-distortion curve may be obtained which links the
source coding rate and the resulting distortion. The
operational R-D curve di�ers from the theoretical R-D
curve for the source because practical quantizers oper-
ate on short lengths of data. Using this curve, we can
computeDs;i(Rs;i). In order to compute the distortion
introduced by the channel in the ith subband, we have
to evaluate

Dc;i(Rc;i) =
X

u

X

v

p(u)p(v=u)Di(u; v)

u; j 2 f1; 2; :; Cg (6)

where C is the cardinality of the codebook andDi(u; v)
is the per sample distortion between the source samples
corresponding to code vectors with indices u and v.
The probability p(u) may be computed from the source
statistics. The transition probability p(v=u) may be
computed as

p(v=u) = �WH (u;v)(1� �n�WH(u;v)) (7)

where WH (u; v) is the Hamming distance between the

codewords corresponding to indices u and v. The pa-
rameter � is a function of the channel BER (�ch) as well
as the coding rate rc;i. It may be viewed as the BER
of the equivalent channel that comprises the channel
encoder, the physical channel and the channel decoder
since the bit errors after channel decoding are essen-
tially independent for block codes. The operational
channel rate-distortion curve,Dc;i(Rc;i), is computed
using (6) and (7).

Using Ds;i(Rs;i) and Dc;i(Rc;i) along with (3), we
can derive an (operational) rate-distortion curve for
the ith subband that takes both source and channel
distortions into consideration. We denote this curve
by Di(Ri). This curve determines the best allocation
for source and channel coding rates for the ith sub-
band, under the constraint that the total rate for the
ith subband is Ri.



In order to optimally allocate the source and chan-
nel coding rates for the subbands, we consider the en-
semble of composite source/channel (operational) rate-
distortion curves of all the subbands, and choose an op-
erating point fR1; R2; :::; RMg that results in minimumPM

i=1Di. This problem of choosing the optimal oper-
ating point from the ensemble of rate-distortion curves
is identical to the classical problem of bit allocation
[?]. This optimal solution has to be derived from the
operational rate-distortion curves, which may not nec-
essarily be convex or even monotone decreasing. The
algorithm presented in [9] may be used under these
conditions. The simpler, greedy algorithm described
in [8] may also be used, although the allocation is, in
general, suboptimal. The optimal solution naturally
depends on the BER of the physical channel.

4. EXTENSION TO A FADING CHANNEL

A fading wireless channel may be modeled by a �nite-
state Markov model [10]. In this model, each state
corresponds to a BSC with a certain BER. The chan-
nel makes transitions between the states based on an
underlying Markov model. This is done by partition-
ing the range of received signal-to-noise ratios at the
receiver into a �nite number of states, and computing
the state and transition probabilities. Since we have
an optimal solution for a BSC whose BER is known,
we can obtain a table of optimal solution with each so-
lution corresponding to a di�erent state of the physical
channel. An estimate of the channel state is obtained
by the transmitter through feedback from the receiver.
The transmitter then chooses the optimal operating
point for that state f(Rs;i; Rc;i); i = 1; 2; ::;Mg.

We make a change in notation for the channel-
induced distortions in order to make the dependence
on the channel explicit. We use Dc;i(Rc;i; �k) to de-
note channel distortion when the channel is in the kth

state (�k denotes the BER in this state.) Therefore,
the total distortion in (1) is now denoted by

D(�k) =

MX

i=1

Di(Ri; �k) (8)

The average total distortion may then be expressed as

D =

LX

k=1

D(�k)p(k) (9)

where p(k) denotes the probability of the kth state.

5. SIMULATION RESULTS

The optimal rate allocation scheme is applied to the
transmission of images over noisy channels. The im-
age is �rst decomposed into several subbands. A vector
quantizer (of dimension 4) is used to code the coe�-
cients in the subbands. This is followed by a Reed-
Solomon (block) channel coder. The modulation scheme
used is BPSK. We chose a channel model that has
three states with corresponding BERs 0.0, 0.01 and
0.05. The state with BER = 0.0 corresponds to a clean
channel.The probabilities of these states are 0.8, 0.15
and 0.05 respectively.

The images used are frames from the \salesman"
sequence. The training for the VQs and the compu-
tation of the operational RD curves is accomplished
using subband coe�cients from several frames of the
sequence. We use intraband VQ since the notion of
rate allocation among the subbands is natural when
coe�cients belonging to the same subband are grouped
together to form the source vectors. This simulation
di�ers from conventional approaches in that the low-
est frequency subband is also encoded using VQ with-
out any DPCM coding. Most coding techniques use
DPCM or transform coding strategies on the coe�-
cients of this subband, exploiting the high correlation
between the coe�cients. However, we do not do this in
order to retain a uniform analytical approach for the
computation of the channel distortion where a trans-
mitted source codeword index may be corrupted due
to the channel.

An image is coded as follows. Given the target
rate and the state of the channel, bit allocation is per-
formed on the composite RD curves speci�c to this
state of the channel using the integer programming ap-
proach outlined in [9]. Once the total rate for each of
the subbands is known, it may be decomposed into
a source coding rate and a channel coding rate. The
subbands are then quantized and channel coding is ac-
complished using Reed-Solomon codes of the appropri-
ate rates. After Reed-Solomon decoding, the received
codeword indices are mapped into the corresponding
centroids, and the image reconstructed from the re-
ceived subbands. The distortion between the original
and received images is computed. The results for this
experiment are outlined in Table 1 for the two noisy
states. The original image as well as images transmit-
ted over a channel with BER = 0.01 and a channel
with BER = 0.05 are shown in �gures 1 through 3
respectively.



6. CONCLUSIONS

The paper describes an optimal source-channel cod-
ing scheme for a subband coder. This is a new ap-
proach to jointly selecting source and channel coding
rates optimized to the current channel conditions. The
scheme outlined is general enough to apply to any class
of source and channel coders. The simulation results
demonstrate the advantage of an adaptive coding strat-
egy that is optimal given the knowledge of the channel
state.
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Table 1 : Simulation results for images

(BER) 0.01 0.05

Rate (bpp) 2.50 3.00

Dstn (dB PSNR) 30.12 27.06

Figure 1: Original Image

Figure 2: Channel BER = 0.01, Rtot = 2.5 bpp

Figure 3: Channel BER = 0.05, Rtot = 3.0 bpp


