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ABSTRACT

We present a new Trellis Coded Vector Residual Quan-

tizer (TCVRQ) that combines trellis coding and vec-

tor residual quantization. We propose new methods

for computing quantization levels and experimentally

analyze the performances of our TCVRQ in the case

of still image coding. Experimental comparisons show

that our quantizer performs better than the standard

Tree and Exhaustive Search Quantizers based on the

Generalized Lloyd Algorithm (GLA).

1. A NEW TRELLIS VECTOR RESIDUAL

QUANTIZER

Quantization is the process of approximating a contin-

uous-amplitude signal by a digital (discrete-amplitude)

signal, minimizing a distortion measure (or error). Un-

fortunately, �xed the coding rate R, an optimal VQ re-

quires computational and storage resources that grow

exponentially with the vector dimension. Moreover,

Lin in [1] showed that the design of an optimal Vector

Quantizer is an NP-complete problem. The design of

sub-optimal vector quantizers is an interesting alterna-

tive to scalar quantizers for applications that require

good quality performances when a limited amount of

computing resources is available.

In this paper we present a new VQ architecture

that operates recursively on the quantization residu-

als. We will demonstrate the performances of this new

VQ based on a trellis structure and compare it experi-

mentallywith the standard Exhaustive Search and Tree

Vector Quantizers.

Quantizers based on Trellis Coding were �rst pro-

posed by Fisher et al. in [2], and made use of the set

partitioning ideas of Ungerboeck [3]. Fisher et al. in

[2] presented results for Trellis Coded Vector Quanti-

zation (TCVQ) in up to four dimensions. Wang and

Moayeri in [4] used the LBG algorithm for codebook

design and report results for vector dimension up to

6. Laroia and Farvadin in [5] combined scalar-vector

quantization (SVQ) with trellis coding. Belzer and

Villasenor in [6] presented design techniques for vec-

tor quantizers with highly symmetric codebooks that

facilitate low complexity quantization as well as parti-

tioning into equiprobable sets for trellis coding.

Our quantizer is di�erent from other structures pro-

posed in literature: all the stages of our TCVRQ are

used to encode the whole vector and our trellis works

by removing the statistical dependence among vector

components and not among distinct vectors.

Figure 1: Trellis Coded Vector Residual Quantizer.

Figure 1 shows the VQ proposed; it is based on

a multistage trellis that quantizes at each stage the

quantization error (or residual) of the previous stage;

we name it Trellis Coded Vector Residual Quantizer or

for short TCVRQ. Our trellis quantizer is organized in

a sequence of identical stages. Each one of these has

states (labelled S0; : : : ; S3) and transitions. A smallEx-

haustive Search Vector Quantizer (ESVQ) is associated

to each transition.

A P -stages TCVRQ, encodes a vector through P

consecutive approximations. Initially the input vector

x = x1 = [x1; x2; : : : ; xn] is quantized as y1 = Q1(x1),

the error x2 = x1�y1 is generated and encoded by the



following stage as y2 = Q2(x2), and then the process

is iterated again. The i � th stage of the quantizer

works on the error xi = xi�1 � yi�1 and the out-

put vector is y =
PP

p=1Qp(xp). The best sequence

of ESVQs, associated to each branch of the graph, is

selected minimizing (for example using Viterbi's algo-

rithm) a given distortion measure. If, for each stage

Ns is the number of the states, Nt is the number of

transitions that leave a state and Np is the codebook

size for each ESVQ, a quantized vector is fully speci�ed

giving P (log 2(Nt)+log 2(Np)) (P log 2(Nt) bits for the

path and P log 2(Np) for the ESVQ codeword).

Decoding is performed by following the path and

summing all the codewords, i.e. if x1 is the original

vector, yp = Qp(xp) is the p-th quantized residual,

then: y1 = Q(x1) =
PP

p=1Q
p(xp). Decoding can be

ended before the P -th stage if we desire a variable-rate

quantizer.

2. CODING COMPLEXITY

The coding complexity of our TCVRQ needs to be mea-

sured in terms of computational complexity (C) and

storage requirements (S). Using a trellis with P stages

and a codebook of L levels for stage, the quantization of

n-dimensional vectors with Mean Square Error (MSE)

requires a number of comparisons for each vector given

by:

CTCVRQ = (L � (1 + 2 � (P � 1))) � n (1)

and the storage requirements are proportional to:

STCV RQ = P � L � n: (2)

An optimal quantizer (ESVQ) with the same coding

rate (P log(L=2) + 1 bit/vector) uses for each vector

CESVQ = n � 2P log(L=2)+1 and requires SESVQ = n �

2P log(L=2)+1 storage locations: the TCVRQ approach

is computational and memory e�ective with respect to

optimal ESVQ.

3. CODEBOOK DESIGN

We design the quantization levels for each stage us-

ing a modi�ed LBG algorithm. The training sets for

each trellis branch are composed only by residuals orig-

inated from the entering branches. Random Partition-

ing is used to partition the levels for the ESVQs on

the branches. The stages are sequentially optimized,

i.e. a local optimum for the stage i is found by using

only information from the 0 : : : (i� 1) stages. RQ joint

optimization techniques described in [7] have not been

useful to these experiments due to the excessive compu-

tational burden of dealing with 10-stages VRQ. In spite

Figure 2: Performance comparison.

of their low computational complexity, sequential op-

timization and random partitioning perform well. We

have not observed substantial performance increase us-

ing more sophisticated partitioning algorithms.

4. EXPERIMENTAL RESULTS

Our TCVRQ is a general-purpose VQ, with low com-

putational costs and small memory requirements. This

makes it very appealing for low bit-rate coding applica-

tions. In order to evaluate TCVRQ performance in a

real application and with a natural source, we have

experimented our TCVRQ with a training set com-

posed by 12 images, all of dimensions 512 by 512 pixels,

with 256 gray levels, including standard test images like

\Ape", \Blonde", \Hotel Lotus", etc.. We divide the

images into vectors of 3 by 3 pixels and quantize the

vectors directly by minimizing their Mean Square Error

(MSE). Minimization is performed on the trellis with

the Viterbi Algorithm. We have compared the per-

formances of our TCVRQ with three classical Vector

Quantizers:

� an Exaustive Search Vector Quantizer designed

using Generalized Lloyd Algorithm;

� a Tree Vector Quantizer with an unbalanced tree

and a variable rate of coding;

� a Tree Vector Quantizer with a balanced tree and

a �xed rate of coding.

We have tested these quantizers on a set of 18 images

out of the training set (images like \Peppers", \Woman

with a Hat" etc.).

Figure 2 plots the average SNR obtained as a func-

tion of the bits used to encode each vector (block). The



compression rate ranges between 24:1 and 7:1. The �g-

ure shows that our TCVRQ exhibits a slope similar to

the two Tree quantizers and, in the interval between 3

and 10 bits/block, outperforms the standard ESVQ.

In terms of memory and computational complex-

ity it is clear that our TCVRQ outperfoms the stan-

dard algorithms. The memory (M) and the number

of comparisons (C) needed to quantize a n-dimensional

vectors with k bits per vector can be summarized as

follows for each of the three di�erent approaches:

� TCVRQ:M = O(P �L�n) , C = O(2�P�L�n).

(L levels, P stages, k = P log(L/2) bit/vector)

� ESVQ: M = O(2k � n) , C = O(2k � n).

� TreeVQ: M = O(2(k+1) � n , C = O(k � n).
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