
ABSTRACT

The performance of any block based image coder can be
improved by applying fractal terms to selected blocks. Two
novel methods are used to achieve this. Firstly the coder
determines whether a local fractal term will improve each
image block by examining its rate/distortion contribution, so
that only beneficial fractal terms are used. Secondly, the
decoder deduces the offset parameters for the local fractal
transform from the basis functions alone, by inferring the
dominant edge position, so that no offset information is
required. To illustrate the method, we use a quadtree
decomposed image with a truncated DCT basis. Using a
standard test image, the proportion of the picture area
enhanced by fractals decreases from 16.1% at 0.6 bpp to
8.1% at a high compression ratio of 80:1 (0.1bpp). The fractal
terms contribute less than 5% of the compressed code in all
cases. The PSNR is improved slightly, and edge detail is
visually enhanced.

1.  BACKGROUND

To compress an image, define an Iterated Function
System (IFS)[1-5] of order N  to be W = {wk; k = 1,..., N } ,

where the wk are contraction mappings, each defined on a

subset Ak of the image support. The attractor of W is a

non-overlapping tiling of the image, as in Figure 1. A fractal
function f (x, y), is then defined which approximates the
brightness g(x, y). An image block taken from the location
Ak is referred to as the parent and an image block taken from

wk( Ak ) is referred to as the child. For each tile the function

is specified by a recursive mapping vk such that

            f (wk(x, y)) = vk(x, y, f (x, y))   for (x, y) in Ak. (1

In this work we use mappings of the form

           vk(x, y, f) = pk(x0 + δx,  y0 + δy) + ek f
~
k (δx, δy) (2

where (x0, y0) is the bottom left corner of Ak and

pk(x0 + δx ,  y0 + δy) = ∑ 
i=1

n
ci bi(δx, δy), is an approximation

by basis functions 

 bi 



,  ek is the single fractal coefficient

and f~k is the parent block  fk(δx, δy) = f (x0 + δx, y0 + δy)
orthogonalized with respect to the basis using

f~k  =  fk  − ∑ 
i=1

n
< bi , fk > bi

(3

where <bi , fk>  =  ∫∫ 
A

k

 fk ( x, y ) bi ( x, y ) dx dy (4

and the basis functions are normalized by <bi , bi> = 1

To solve, the known image g(x, y) is used in place of the
unknown fractal function f (x, y) and the approximation is
known to be valid by the Collage Theorem [1].

The process is fractal because of the self-similarity
inherent in vk. The mappings form an ensemble of functions

which, when iterated or otherwise rendered [5], form an
approximation to the image. Usually the tiling of the image
is by square or rectangular child blocks, and it is often
assumed that pk is a simple brightness level. Much work has

concentrated on reducing the complexity of searching for the
best parent to map onto each child [6, 7].

An alternative approach uses more complex basis
functions [7, 8] and restricts or even eliminates searching.
Such an approach is the Bath Fractal Transform (BFT) [9,
10] with which a pre-determined tiling without searching
gives the greatest accuracy at a given compression ratio,
when used with a quadratic basis. In combination with the
Accurate Fractal Rendering Algorithm (AFRA) [5], the BFT
has been used for real time fractal video [11]. 
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Figure 1. Fractal transforms apply contraction mappings
of parent blocks onto child blocks.
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2.  IMPLICIT FRACTALS

In this work we improve the performance of
non-searching fractal compression by allowing any relative
position of child block and parent block provided the child
is local to the parent. We start from the observation that
fractal terms enhance edges in images provided the
alignment of the edges in the mapping is correct. To exploit
this, we determine the dominant edge of the child block from
the basis functions alone, using a mathematical model of the
edge. We position the parent block so that the edge passes
through it in the same relative position, as illustrated by
Figure 2. The method applies to any choice of basis functions
and to any image partition. 

Once the coder has calculated the basis coefficients for
a child block, the same process of edge determination and
matching to find the parent can be carried out as will be used
in the decoder. The coder can then decide whether using a
fractal term will improve the rate/distortion characteristic of
the image. The compressed code contains only the fractal
coefficient ek, because the offset of the child within the parent

will be computed by the decoder from the same information
that was used by the coder.

The coder froms a non-fractal approximation to all or
part of the image by any coding method.  The code for any
image block adds ∆b bits to the total image code, and
increases its total MSE by ∆MSE. If the slope of the rate
distortion curve is determined numerically by the coder as it
compresses a partition of the image, then the terminal slope
∂MSE ⁄ ∂b is know quite accurately, point A in Figure 3.  The
coder can then examine each image block to determine
whether a fractal term will improve the compression. It is
assumed that the terminal slope will not be altered
appreciably by this process. 

 If a fractal is used, it will contribute further bits, ∆bfrac

and improve the image MSE by ∆MSEfrac. The fractal term

is beneficial in rate/distortion terms if and only if

∆MSEfrac

∆bfrac

  <  
∂MSE 

∂b 
 

(5

(i.e. is more negative at point A in Figure 3.)

as illustrated by Figure 3. The estimate of ∆bfrac can be

completely accurate, even if entropy coding is used. The
collage theorem [1, 2] would normally be used to estimate
∆MSEfrac, which is not completely accurate although bounds

on its accuracy can be computed. The gradient is also more
difficult to compute if the basis functions and the fractal
component are not orthogonal. 

3.  IMPLEMENTATION AND EVALUATION

To evaluate the method, for pk (x, y) we used a DCT

basis limited to the 6 terms C00 , C01 , C02 , C10 , C11 and

C20. C00was quantized to 7 bits, and the other coefficients to

6 bits, with a fixed Huffman table derived from a test set of
images. An image is partitioned into 32 x 32 pixel blocks,
and within each partition a quadtree structure was formed so
that the basis approximation MSE was distributed as evenly
as possible over the image. Because it seldom occurs that a
fractal term is used with the initial partition, it is acceptable
to carry out the fractal selection only as blocks are split.

Given the DCT coefficients, we can classify a block as
being predominantly horizontal or predominantly vertical by
comparing 


C10

 to 

C01

. To apply the implicit fractal, we

search a 2D table using the edge model, which gives the edge
location as a function of the ratios 

rxx = 




C20

C10




 and ryx = 





C01

C10




 for a vertical edge and

similarly ryy = 




C02

C01




 and rxy = 





C10

C01




 for horizontal. 

It can be shown that these ratios are independent of the
intensity on either side of the edge according to the model
used, Figure 4. The location is reflected horizontally and/or
vertically according to the signs of the ratios.

The fractal coefficient is then found by solving equation
2 for ek. By the Collage Theorem, f (x, y) is approximated by

the original parent block g ( x, y), orthogonalized with
respect to the basis [1, 7]. In our experiments, using a

A

Figure 3. A block is selected for fractal enhancement by
the terminal slope of the rate/distortion characteristic.

 Slope  
∂MSE

∂b

Steeper,
use fractal

Less steep,
don’t use fractal.

Rate/Distortion
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Image

Parent
 block
g ( Ak )

Figure 2. A local fractal transform, with the child block
inside the parent block. For a strong edge, the parent/child

relationship can be deduced from the basis function.

Child
 block
wk (g)
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Huffman coded fractal coefficient ek adds less than 2 bits to

the code of each block in which it is used. Because the
decoder can determine the fractal offset vectors from the
basis approximation, the fractal terms are very efficiently
coded. 

Figure 5 shows the improvement in edge definition that
can be obtained in a synthetic image. The implicit fractal
method improves all orientations of the edge by computing
the optimum parent location from the decoded basis function.

In Table 1 we list the results of coding the test image
Gold Hill over a range of compression ratios. Figure 6 shows
clearly the improvement in edge detail obtained in the Lenna
image where the implicit fractal enhancement is applied. 

4.  DISCUSSION AND CONCLUSIONS
We have introduced a technique for applying fractal

transforms in combination with other image coding methods.
It could be used to improve any image coding system in
which the original and approximated images are available to
the coder, including wavelet compression. Once an image
has been coded by the basis approximation, one can examine
any partition of the image to decide where a fractal term will
improve the rate/distortion characteristic.

We have incorporated a fractal term in the test examples
only where the L2 measured rate/distortion performance is
not degraded according to our prediction. While the PSNR
is slightly improved over the whole image, in the blocks
actually coded with a fractal the improvement will be several
times larger, and the visual quality contributed by greater
edge definition can be striking, as the examples show. This
suggests that the condition for inclusion of a fractal term
might be too severe, if the objective is optimum visual
quality. It might be useful, for example, to select fractal
enhancement for blocks with significant edges even if the
PSNR is slightly degraded.

The implicit fractal method is particularly powerful
because the offset information can be determined by the
decoder from its reconstruction of the basis approximation.
Over an entire picture, if only a proportion of blocks are
fractally enhanced at an average compression penalty of 2
bits per block, the overall cost per pixel will be negligible.
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bpp

PSNR
Basis

Approx

PSNR
Centred

Child

PSNR
Implicit
fractal

Fractal
% of

Picture
Area

Fractal
terms
bpp

0.6 31.39 31.50 31.53 16.1 .028

0.5 30.74 30.88 30.90 16.1 .123

0.4 30.01 30.16 30.18 15.4 .018

0.3 29.15 29.33 29.35 14.8 .014

0.2 28.09 28.28 28.30 13.0 .009

0.1 26.60 26.70 26.71 8.1 .004

Table 1. Implicit fractal applied to the standard test image
Gold Hill. 

Figure 4. A simple model of an edge, in which l and r
are the flat intensities on either side of the edge.

l

r
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(a) DCT basis, PSNR 29.14 (b) Implicit fractal, PSNR 29.21 (c) Blocks selected for Implicit Fractal

Figure 6. Detail at 0.2 bpp. The PSNR difference is small, but the implicit fractal improves edges visually.

Figure 5. Edge enhancement with implicit fractals, fixed 16x16 blocks. (a) Original. (b) Basis approximation.
(c) Local fractal with child centred on parent. (d) Local fractal with implicit alignment.

(a) (b)

(c) (d)
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