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ABSTRACT

This paper presents a predictive residual vector quantiza-

tion (PRVQ) scheme using a modular neural network vector

predictor. The proposed PRVQ scheme takes the advantage

of the high prediction gain and the improved edge �delity of

a modular neural network vector predictor in order to imple-

ment a high performance vector quantization (VQ) scheme

with low search complexity and a high perceptual quality.

Simulation results show that the proposed PRVQ with mod-

ular vector predictor outperforms the equivalent PRVQ with

general vector predictor (operating at the same bit rate) by

more than 1dB. Furthermore, the perceptual quality of the

reconstructed image is also improved.

1. INTRODUCTION

A predictive residual vector quantization (PRVQ) scheme

uses a predictor that predicts the current block from the pre-

viously encoded blocks and constructs a residual block (the

di�erence between the original and predicted blocks) [1]. The

residual block is then encoded using relatively small mul-

tistage codebooks. The prediction exploits the inter-block

correlation and removes the redundancy among neighboring

blocks.

Recently, we have reported on a modular neural network

vector predictor (shown in Figure 3) to improve the predic-

tive component of a PRVQ coding scheme [2]. The vector

prediction technique consists of �ve dedicated predictors (ex-

perts), where each expert predictor is optimized for a partic-

ular class of input vectors. An input vector is classi�ed into

one of �ve classes based on its directional variances. One ex-

pert is optimized for stationary blocks, and each of the other

four experts are optimized to predict horizontal, vertical,

45o, and 135o diagonally oriented edge-blocks, respectively.

An integrating unit, called gating network, is then used to

select or combine the outputs of the experts in order to form

the �nal output of the modular neural network vector pre-

dictor. Experimental results show that the modular vector

predictor gives an improvement of 1:7dB (in an open-loop

design) when compared to a single multi-layer perceptron

(MLP) predictor. The perceptual quality of the predicted

images is also improved signi�cantly.

A closed-loop approach is used for the PRVQ design. In

the closed-loop approach, the modular vector predictor is

�rst designed based on the original previous training vectors

(open-loop design). The residual vector quantization (RVQ)

codebooks are then iteratively optimized for by �xing the

predictor in a closed-loop fashion, where the prediction is

based on the previously reconstructed vectors. The general-

ized Lloyd algorithm (GLA) is used for designing the stage

codebooks in the closed-loop design technique.

Since the gating network in the modular vector predictor

is trained such that its output produces the probability that

the input vector belongs to a particular class, we may choose

the largest output value of the gating network as the class

of the current block. Thus, the gating network predicts the

class of the current block. This class information can be

used to select one of several sets of codebooks where we may

create several separate sets of codebooks for several classes

of blocks. Thus, each set of codebooks is optimized for a

particular class of blocks. In this way, the edge accuracy

of the edge vectors can further be improved. Note that the

class information is available at the decoder, thus, no class

information is needed to be sent.

2. PREDICTIVE RESIDUAL VECTOR

QUANTIZER WITH MODULAR PREDICTOR

Figure 1 shows the functional diagram of the proposed

PRVQ scheme. The PRVQ employs a modular neural net-

work vector predictor and a modular RVQ. Each component

RVQ in the modular RVQ is referred to as class-RVQ. The

vector prediction system consists of �ve dedicated predictors

(experts), where each expert predictor is optimized for a par-

ticular class of input vectors. An input vector is presented to

all the predictors and a gating network is then used to select

or combine the outputs of the experts in order to form the

�nal output of the modular network. The residual vector, e1
is quantized by using the appropriate class-RVQ.

Previous research shows that the improvement by using a

modular neural network vector predictor results not only in



a higher prediction gain but also the edges in the predicted

block are reproduced with high �delity [2]. In the modular

neural network vector predictor, expert predictors cooper-

ate in the prediction process. When the integrating unit is

well designed, the current block can be predicted with im-

proved accuracy by its corresponding class expert predictor,

since each expert predictor has been trained for predicting

a particular class of input vectors. It will also enhance per-

formance of a PRVQ, since the increase in prediction gain

results in an improvement in overall coding gain.
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Figure 1: The proposed PRVQ scheme.

3. MODULAR NEURAL NETWORK VECTOR

PREDICTOR

In the vector predictors employed in this coding scheme,

the prediction of the current block at location (m;n) is es-

timated by using four causal neighboring blocks located at

(m� 1; n� 1), (m� 1; n), (m� 1; n+ 1), and (m;n� 1), as

shown in Figure 2.

~X = �
�
X̂A; X̂B ; X̂C ; X̂D

�
(1)

where � (�) is a non-linear function.

X̂

X
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Figure 2: Geometry of block (vector) prediction.

A modular neural network consists of several expert neu-

ral networks (modules), where each expert is optimized to

perform a particular task of an overall complex operation.

An integrating unit, called gating network, is used to select

or combine the outputs of the modules (expert networks) in

order to form the �nal output of the modular network.

In statistics, this idea of modularity is referred to as the

mixture model [4]. Mixture models have been used in a
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Figure 3: Modular neural network vector Predictor.

wide variety of applications where data derived from two or

more categories are mixed in varying proportions [4]. A data

sample y in a data set which is approximated by a mixture

model by giving input x can be represented by a linear com-

bination of outputs of several distinct functions yk(�), where

k = 1; 2; : : : ; K.

y =

KX
k = 1

�k yk(x); (2)

where

0 � �k � 1 k = 1; 2; : : : ; K (3)

and
KX

k = 1

�k = 1: (4)

The parameters �k are called mixing weights and the

functions yk(�) are called mixing components, where k =

1; 2; : : : ; K. Each function yk(�) is responsible for approx-

imating data y in its corresponding category k, while the

parameter �k gives a weight to the functions yk(�). If the

output of one function can closely approximate a data sam-

ple, its corresponding weighting factor should be high. On

the contrary, if the output of one function is far away from

a data sample, its corresponding weighting factor should be

low. We may consider in stochastic processes that the data

is obtained by selecting function yk(�) with probability �k

and then by calculating function yk(�) for data y.

The architecture of a modular neural network consists of

K (K = 5) expert networks and one gating network, shown

in Figure 3. The expert networks share the same inputs fXA,

XB, XC , XDg, which are the pixel values of four neighboring

blocks, whereas the gating network accesses the block vari-

ances and directional variances of four neighboring blocks.

We may regard the block variances and directional variances

as extracted features for classi�cation task. The task of each

expert network is to predict image-blocks that belong to a

particular class. The desired response of each expert network

is the current block. The task of the gating network is to as-

sign one expert network to each input. The desired response

of the gating network is the class of the current block. The



�nal output of a modular neural network is a weighted linear

combination of the expert networks given by

~X =

KX
k = 1

gk ~Xk: (5)

where weighting factors, gk, are given by the gating network.
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Figure 4: The directional variances calculated by the inter-

est operator.

The �rst step of the partitioning algorithm is to assign

a class label to each of the training blocks out of the �ve

directional classes: stationary (S), horizontal (H), vertical

(V), diagonal-135o (D-135o), and diagonal-45o (D-45o). A

feature extraction technique, called the interest operator [5],

is used to �nd the contour directions of a vector, shown in

Figure 4. The interest operator �nds the variances in the

horizontal, vertical, and both diagonal directions for each

block in the image.

All the training blocks are �rst classi�ed as either sta-

tionary or edge blocks by only using the block variance �.

A simple thresholding criterion is used for this classi�cation;

that is, if the block variance does not exceed a given variance

threshold ��, then that block is assumed to have low textural

activity and is labeled as a stationary block. Otherwise, the

block is labeled as an edge block. The edge blocks are then

further classi�ed into one of the four directional classes. The

directional class of an edge block, �, is identi�ed by selecting

the directional class with the least directional variance.

� =

�
Stationary � � ��
argminc �c otherwise,

where c = f H, V, D � 135o, and D � 45o g. The variance

threshold �� is found experimentally.

Once all of the training vectors are assigned a class label,

we can now design each individual expert by using only the

subset of the training data that belongs to that particular

class. All of these experts are designed by minimizing the

mean square error (MSE) between the desired (target) and

the output vectors. It is an auto-regression problem, where

the inputs of each expert are the four causal neighboring

blocks f XA, XB, XC , XD g and the desired response X is

the current block. The predicted block, ~Xk, is given by

~Xk = �k(XA;XB ;XC ;XD); (6)

where �k(�) is the prediction function performed by expert

network k, and k = f S, H, V, D � 135o, and D � 45o g.

We implement each expert network by using a multi-layer

perceptron (MLP) neural network with one hidden layer.

The gating network is designed in order to combine the

outputs of the expert predictors. The gating network is de-

signed such that its outputs estimate the probabilities that

a given block is predicted by expert networks. This is ac-

complished by applying a transformation, called soft max

[3], at the output of the gating network. Soft max can be

regarded as the smooth version of the winner-takes-all ac-

tivation model. The softmax function at the output layer

also implements the (soft) competition between the expert

networks. The goal of training the gating network is to mini-

mize the probability of misclassi�cation. We also implement

the gating network by using a multi-layer perceptron (MLP)

neural network with one hidden layer.

4. EXPERIMENTAL RESULTS

The proposed PRVQ scheme is designed with a two-stage

residual vector quantizer, using the block size of 4�4 for the

peak bit rates of 0:75 bit per pixel (bpp) (two residual quan-

tizers of size 64 each). Table 1 shows some of the preliminary

results for a test image Lena, in terms of average bit rate (in-

dices are entropy encoded) and Peak Signal to Noise Ratio

(PSNR). The �rst scheme, Proposed-1, uses only one set of

two-stage residual vector quantizer for all classes of residual

vectors. The second scheme, Proposed-2, uses separate set of

two-stage residual vector quantizer for each class of residual

vectors. The third scheme, Proposed-3, uses only one-stage

residual vector quantizer for the class of stationary vectors,

which is recognized as an easy-to-encode class, and uses 4

separate sets of two-stage residual vector quantizers for the

other four classes. It can be seen from the Table 1 that

the Proposed-1 outperforms the equivalent PRVQ scheme by

0:71dB at a lower bit rate (around 8% lower). The improve-

ment is due to the high prediction gain of the modular vector

predictor. The Proposed-2 further exploits the ability of the

modular vector predictor by applying separate sets of resid-

ual codebooks. It gives an improvement of 1:11dB over the

equivalent PRVQ scheme at a similar bit rate. Moreover, the

bit rate could be further reduced when the proposed PRVQ

scheme uses only one-stage residual vector quantizer for the

class of stationary vector and uses two-stage residual vec-

tor quantizer for the other four classes, since the class of

stationary vectors is recognized as an easy-to-encoded class.

This scheme gives an extra saving of 0:187bpp (33%), when

the PSNR drops only 0:55dB. Compared to the equivalent

PRVQ scheme, the Proposed-3 has a higher PSNR (0:54dB)



and a lower bit rate (0:164bpp). The original and recon-

structed images are shown in Figure 5.

Table 1: Performance comparison in terms of average

Bit-Rate and PSNR for the test image Lena. The peak

bit rate is 0:75 bit/pixel (bpp). Indices are entropy en-

coded.
VQ Average Bit-Rate PSNR

Schemes (entropy) dB

PRVQ [1] 0.5462 bpp 34.008

Proposed-1 0.5055 bpp 34.721

Proposed-2 0.5686 bpp 35.124

Proposed-3 0.3819 bpp 34.548
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Figure 5: (a) Original image \Lena," (b) reconstructed

test image \Lena" using Proposed-1, (c) reconstructed test

image "Lena" using Proposed-2, (d) reconstructed test image

\Lena" using Proposed-3.


