
PROGRESSIVE WAVELET IMAGE CODING

BASED ON A CONDITIONAL PROBABILITY MODEL

Robert W. Buccigrossi Eero P. Simoncelli

GRASP Laboratory
Computer and Information Science Dept.

University of Pennsylvania
Philadelphia, PA 19104

ABSTRACT

We present a wavelet image coder based on an explicit
model of the conditional statistical relationships between
coe�cients in di�erent subbands. In particular, we con-
struct a parameterized model for the conditional probabil-
ity of a coe�cient given coe�cients at a coarser scale. Sub-
band coe�cients are encoded one bitplane at a time using
a non-adaptive arithmetic encoder. The overall ordering
of bitplanes is determined by the ratio of their encoded
variance to compressed size. We show rate-distortion com-
parisons of the coder to �rst and second-order theoretical
entropy bounds and the EZW coder [1]. The coder is in-
herently embedded, and should prove useful in applications
requiring progressive transmission.

Orthonormal wavelet decompositions have proven to be
extremely e�ective for image compression [2, 3, 4, 5, 1]. We
believe there are several statistical reasons for this success.
Similar to the Fourier transform, wavelets are quite good at
decorrelating the second-order statistics of natural signals.
The resulting redistribution of variance leads to a reduction
in the total �rst-order entropy of the coe�cients relative to
the entropy of the original image pixels.
In addition to the redistribution of variance, wavelet sub-

band statistics are signi�cantly non-Gaussian. This prop-
erty has been exploited in compression, noise removal and
texture synthesis (eg., [6, 7, 8, 9, 10]). This observation
should be contrasted with frequency-based decompositions,
which have approximately Gaussian statistics. Since the
Gaussian is the maximal-entropy distribution for a given
variance, wavelet-based coders are able to achieve higher
degrees of compression than frequency-based coders such
as JPEG.
Finally, wavelet decompositions exhibit additional sta-

tistical regularity beyond the point statistics of the sub-
bands. In particular, it is clear from casual inspection that
the subbands of a wavelet transform are similar in appear-
ance, and are therefore not statistically independent (see
�gure 2). Such dependencies have recently been utilized in
image compression. Shapiro [1] constructed a coder that
exploits the fact that a zero coe�cient in a bitplane of
a subband is likely to indicate a tree of zero coe�cients
at the same location in all �ner scale subbands. Pent-
land et al. [11, 12] used a vector quantizer to predict �ne
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scale coe�cients from coarser scales. Quite recently, sev-
eral authors [13, 14] have used adaptive arithmetic coding
to capture conditional statistics between subbands.
In this paper, we attempt to more directly take advantage

of the joint statistics between wavelet subbands at adjacent
scales and orientations. We explore the empirical nature of
these statistics, develop a simple statistical model, and use
it to implement a progressive image compression algorithm.

1. POINT AND JOINT SUBBAND
STATISTICS

Figure 1 shows plots of the point statistics (histograms) for
a number of subbands of a typical wavelet decompositions.
The �gure also shows that these statistics are reasonably
well �t [6, 10] by distributions of the form:

Px(x) / e
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: (1)

The distribution is zero-mean and symmetric, and the pa-
rameters fs; pg are directly related to the second and fourth
moments. Speci�cally (after consultation with an integral
table) one obtains:
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function, and �2 and � are the variance and kurtosis (fourth
moment divided by squared variance). Note that by model-
ing the statistics in this simplistic fashion, we are assuming
both independence and stationarity of the subband coe�-
cients, both of which are generally incorrect. Nevertheless,
the model provides a reasonable �t to the statistics of many
natural images in our database, as can be seen in the ex-
amples of �gure 1.
Now consider the relationship between wavelet subbands.

Figure 2 shows the magnitudes of wavelet coe�cients in a
four-level pyramid decomposition. It is visually apparent
that coe�cients with large magnitude tend to occur at the
same relative locations in subbands at di�erent scales. This
is true when comparing subbands of the same orientation,
and also holds (to a lesser extent) across orientations.
To capture this relationship more precisely, consider the

joint statistics for two coe�cient subbands. Figure 3 shows
the conditional statistics for two horizontal subbands at ad-
jacent scales. That is, we plot the conditional histogram
P(log

2
(jY j)j log

2
(jXj)) where X is the \parent" coe�cient

(i.e., at the coarser scale) and Y is the corresponding \child"
coe�cient (i.e., at the �ner scale, but at the same relative
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Figure 1. Examples of subband coe�cient his-
tograms (solid lines) �tted with the function in equa-
tion (1) (dotted lines). The subbands correspond
to three di�erent images (\Lena", "Goldhill", "Ba-
boon"), and two di�erent orientations (top row: hor-
izontal, bottom row: diagonal).

location and orientation). When the magnitude of the par-
ent coe�cient is large, the expected value of the magnitude
of the child appears to be linearly related to the magnitude
of parent. When the parent magnitude is small, the magni-
tude of the child is independent of the parent magnitude.1

Note that we are considering coe�cient magnitudes: A sim-
ple linear predictor for the raw coe�cients will typically fail
because the coe�cient signs are essentially uncorrelated.
Empirically, the statistics shown in Figure 3 seem to be

quite regular across images. We model the mean of the
conditional statistics as:

E[log
2
(Y )j log

2
(X) = x] = log

2
(2x�+ n) (3)

where � and n are parameters that can be determined by
least squares estimation. Furthermore, the vertical cross-
sections of the statistics in �gure 3 are highly regular, and
after normalization for mean and variance, can be �t by a
single lookup table. Figure 4 shows these normalized con-
ditional distributions for a set of natural images. Despite
the variety of image content (e.g., we include a face, a land-
scape, and a CT scan), these cross sections are quite similar.

2. IMPLEMENTATION OF A PROGRESSIVE
IMAGE CODER

We have implemented an image coder based on the statisti-
cal model described above. We refer to this as the \Embed-
ded Predictive Wavelet Image Coder" (EPWIC). The coder
is based on a separable orthonormal wavelet decomposition
using 9-tap symmetric (linear-phase) �lters designed in [15].
The encoded bit stream begins with a header containing
the dimensions of the image and the number of pyramid
levels. Coe�cients are quantized to 10 bits, which are sent
as bitplanes. Subband bitplanes are ordered according to a
greedy algorithm, which chooses the bitplane with the high-
est ratio of encoded variance to encoded size (in bits). The
sign bit for each coe�cient is sent just after the �rst \on"
bit, as in [14]. For each subband, the quantities (s; p) are

1We believe that this occurs because low-amplitude coe�-
cients are dominated by quantization and other noise sources.

 

Figure 2. Example coe�cient magnitudes of a
wavelet decomposition. Shown are absolute values
of subband coe�cients in a 4-level separable wavelet
decomposition of the \Einstein" image. Note that
high-magnitude coe�cients at adjacent scales tend
to be located in the same spatial positions.
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Figure 3. Conditional histogram of coe�cient mag-
nitudes in horizontal subbands of two adjacent scales
of the \boats" image. Intensity corresponds to prob-
ability, except that each column has been indepen-
dently rescaled to �ll the full range of intensities.
The right side of the distribution is concentrated
about a unit-slope line, indicating that child (�ne-
scale) coe�cients are roughly proportional in mag-
nitude to parent (coarse-scale) coe�cients. The left
side of the distribution is concentrated about a hori-
zontal line, indicating child coe�cients are indepen-
dent of parent coe�cients in this region.



Baboon H1  

Boats H1   

CT−Scan H1 

Goldhill H1

Lena H1    

Peppers H1 

−6 −5 −4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

log2(abs(child))

P
ro

ba
bi

lit
y

Baboon D1  

Boats D1   

CT−Scan D1 

Goldhill D1

Lena D1    

Peppers D1 

−6 −5 −4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

log2(abs(child))

P
ro

ba
bi

lit
y

Figure 4. Normalized conditional histograms of
child coe�cients for a set of six natural images. Top:
horizontal subband. Bottom: diagonal subband.

estimated using the relationship in equation (2), and (�; n)
are estimated by least-squares �tting to joint histograms.
These model parameters are encoded as 8-bit quantities,
and are sent in the encoded bit stream just before the �rst
bitplane of their corresponding subbands.
Using the four encoded parameters, the receiver con-

structs a numerical table of the joint probability density
for each parent-child pair. This is done via Bayes' rule,
using a prior density speci�ed by equation (1), and a con-
ditional density speci�ed by a lookup table formed by aver-
aging conditional subband statistics (across all scales, ori-
entations, and images in our database). For each child bit,
we calculate the probability that it is one (conditioned on
the bits that have already been received for both parent
and child) by numerically integrating over the appropriate
rectangular region of the joint distribution. A non-adaptive
arithmetic encoder [16], which takes advantage of the com-
puted probability values, is then used to encode the actual
bit values. Finally, the arithmetic encoding of the bitplane
is compared to a run-length encoding of the same bitplane,
and the smaller representation is inserted into the encoded
bit stream. Note that all bitplanes of the lowpass band are
sent using run-length encoding.

3. RESULTS

Figure 5 shows a progressive sequence of EPWIC images.
Figure 6 shows a rate-distortion comparison of our coder to
the EZW coder and theoretical entropy bounds averaged
across six example images. Each curve gives the SNR (in
dB) relative to the �rst-order entropy. The second-order
(i.e., conditional across scale) entropy is also shown. Both
entropies are computed using the image sample statistics
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Figure 6. Comparison of rate-distortion curves for a
set of actual coders and theoretical entropy bounds.
Shown are SNR values, relative to the �rst-order en-
tropy (dotted horizontal line), averaged over six im-
ages (\Baboon", \Boats", \Goldhill", \Lena", \Pep-
pers", and a CT scan). See text for full description.

(histograms). Results from three implemented coders are
also shown: a �rst-order implementation of EPWIC (i.e.,
subbands encoded independently, using the model in equa-
tion (1), the full (conditional) implementation of EPWIC,
and the EZW coder [1].2 The �rst-order implementation is,
on average, about 1dB worse than the �rst-order entropy.
This is due to a combination of incorrectness of the proba-
bility model and the ine�ciencies of the arithmetic encoder.
Both EZW and EPWIC show signi�cant improvement over
the �rst-order coder, and surpass the �rst-order entropy at
higher bitrates. EPWIC outperforms EZW at higher bi-
trates, but is somewhat ine�cient at lower bitrates.

4. DISCUSSION

We have presented an embedded wavelet image coder based
on a model of joint statistics. Despite its simplicity, the per-
formance of the coder (in an MSE sense) is excellent. Such
a coder is ideal for progressive transmission applications,
such as viewing samples of an image database over the in-
ternet. The receiver could be constructed to decode the
data to an arbitrary dimension and bit depth, depending
on the display device and/or user preferences.
Many improvements could be made to EPWIC. The

arithmetic coder could be made adaptive, and the represen-
tation of the parameters (s; p; �; n) could be re�ned. More
fundamentally, one would like to improve the underlying
statistical characterization. Ideally, one would like to de-
rive a statistical model from the physical constraints of light
re
ectance and image formation, but this is extremely dif-
�cult. Even without such a model based on �rst principles,
alternative point probability models may give improved re-
sults (e.g., see [9]). In addition, a model for sign bit proba-
bilities should be incorporated. We are currently developing
extended probability models which incorporate subbands
other than the immediate parent (e.g., other orientations).
Preliminary results show marked improvements.
EPWIC could be extended to handle color images. Given

the apparent role of noise in the conditional distribution

2We thank Sarno� Research Center for assistance in the EZW
comparisons.
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Figure 5. A progressive series of the \boats" image encoded using EPWIC.

(see �gure 3), it might also be extended to perform noise
removal, as has been suggested in [17]. Finally, we are work-
ing to incorporate this and related probability models into
other wavelet-based applications, such as image enhance-
ment.
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