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ABSTRACT

We consider the problem of lossy source coding for trans-
mission across an unknown or time-varying noisy channel.
The objective is to design an optimal compression system
for applications where the unknown channel characteristics
are independently estimated at the channel encoder and
decoder. Channel estimation reliability is allowed to vary
from perfect channel identification to no channel identifi-
cation. In each case, the goal in system design and oper-
ation is to achieve the best possible expected performance
with respect to the unknown channel state and the accuracy
of the channel estimators. We describe an optimal design
technique and an algorithm for achieving optimal expected
performance for the entire array of channel estimation accu-
racies. The resulting system achieves up to 9 dB improve-
ment over the performance on a system designed assuming
zero probability of error when used to encode a collection
of medical brain scans for transmission across a finite state
channel containing two equally probable binary symmetric
channels with crossover probabilities .05 and .001.

1. INTRODUCTION

Shannon’s separation theorem and its later generalizations
prove that for very broad families of sources and channels,
independently designed source and channel codes yield the
same performance capabilities as jointly designed codes. As
a result, the problems of source and channel coding have
largely been addressed independently. Unfortunately, the
separation theorem is an asymptotic result. Thus while it is
true that the optimal performance of a communication sys-
tem containing independently designed source and channel
codes equals the optimal performance of a combined source
and channel coder at infinite vector dimensions and block
lengths, the same cannot be said for independently designed
source and channel coders in the finite dimensional world
of practical codes.

As a result, a number of researchers in both the source
and channel coding communities have considered the prob-
lem of joint source and channel code design for practical
applications. In this paper, we concentrate on a subset of
the above joint design problem. In particular, we consider
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the problem of fixed rate lossy source code design and oper-
ation for scenarios where the lossily encoded source symbols
will be subjected to noise.

A number of authors have studied the problem of source
code design for transmission across noisy channels (e.g., [1]
and the references therein). In [1], Farvardin analyzes the
optimal design algorithm and associated performance for
sending the output of a fixed-rate vector quantizer (VQ)
across a noisy channel. Unfortunately, as Farvardin notes,
the optimal design and performance are channel dependent.
Thus, a source code designed for one channel and operated
across another channel will not achieve the optimal perfor-
mance for the channel in operation. As a result, Farvardin’s
code design is ill-suited for many of today’s communica-
tion applications, where channel characteristics are often
unknown at design time or even time-varying.

In order to study source code design for channels with
unknown or time-varying statistics, we must first develop
a reasonable channel model. We here consider a discrete,
finite-state channel model. In this model, the channel is
considered to pass through some finite number of possi-
ble “states” or modes. The channel transition probabilities
for any given channel use are a deterministic function of
the channel’s state at the time of that use. In modeling a
channel of unknown characteristics, the finite collection of
states and state probabilities is chosen according to some
reasonable quantization of the space of possible channels
and probability of each of the resulting channel models. A
time-varying channel may similarly be modeled by choosing
a collection of channels and modeling the random process
according to which the channel changes among the states.

In [2], Duman and Salehi consider the problem of source
code design for the above described finite-state channel model.
In that work, they describe an algorithm for achieving opti-
mal performance on the best channel within the finite-state
channel’s collection of possible channels subject to a con-
straint on the performance on the worst channel in the col-
lection. In this work, we replace the above constrained op-
timization with a simple unconstrained optimization. The
algorithm described in Section 3 minimizes the overall ez-
pected end-to-end distortion through the system for each
possible fixed-rate source code, where the expectation takes
into account both the random process describing the chan-
nel probabilities and the inaccuracy in the estimation of the
channel state at the encoder and decoder.
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Figure 1: The communication system model.

2. THE PROBLEM

Consider a discrete channel with fixed-rate binary input
b € {0,1}" and output b € {0,1}". Let S = {1,2,...,|S|}
be a finite collection of channel state indices. We assume
that the channel switching process is a memoryless random
process that changes state at most once every channel use.
That is, we assume that the channel state will not change
in the midst of a single channel transmission and that the
next state function is an iid random process with alphabet
S. For any s € S and any b,b € {0,1}", let P(s) be the
probability of state s and C,(b|b) be the probability that
the channel output equals b given a channel input of b and
channel state s. Since the channel state is described by a
random process and this process is unknown to the source
encoder and decoder, we include a state estimator at both
the encoder and decoder. The state estimators will likewise
be modeled as random processes. For any s,§ € S, we define
T'(5]s) and R(§]s) to be the probability that the transmitter
and receiver respectively estimate the channel state to equal
§ given a true channel state of s.

As in [2], we will allow the encoder and decoder to
change as a function of the transmitter and receiver state
estimations s; and s,. We therefore will consider the de-
sign of a collection of encoders {as : s € S} and a col-
lection of decoders {3s : s € S}. For each s € S, the
encoder o, : XF — {0,1}" maps the input space X* of
k-dimensional data vectors to the output space {0,1}" of
binary n-tuples. Likewise, each decoder 8s : {0,1}" — X"
maps its input space of possible binary n-tuples to the
output space of possible reproduction values. (Typically,
X C X.) The resulting system is illustrated in figure 2.

Suppose that we are given some probability distribu-
tion function g on the space of possible input vectors and
a distortion measure d : X* x X* — R. We will use
d(z*, &%) = Zle(a:,- — #;)? throughout this paper. Then
the expected distortion associated with using the above
code is
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In the following section we address the problem of optimal
encoder and decoder design given an arbitrary finite-state
channel and pair of estimation error distributions for any
fixed rate n.

3. THE ALGORITHM

Consider the problem of code design for the communica-
tions system described in the previous section. Notice that
at any given time, the transmitter has a single estimate s;
of the current channel state and uses the encoder «, asso-
ciated with the current estimate. The optimal encoder as,
is thus the encoder that minimizes for each z* the expected
distortion between z* and its reproduction at the decoder
given that the transmitter state estimate is s;. Thus for
each s; € S, we describe the optimal encoder o, as
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Notice that the optimal encoder is no longer the near-
est neighbor encoder of traditional vector quantization. The
binary string to which o maps a given z* vector may not
be the one with the closest reproduction Gs(-) due to the
fact that the binary string may be corrupted in transmis-
sion and the channel estimates may be incorrect at either
the encoder or the decoder or both. Thus every decoder
and every codeword in each of those decoders affects the
encoder’s optimal encoding rule.

The above optimal encoding rule holds across all possi-
ble accuracies for the transmitter’s state estimator. If the
encoder’s state estimation is perfect, then T'(s¢|s) = 1 if
st = s and 0 otherwise, and the encoding rules for the
|S| encoders in the collection may be quite different. If
T(s¢|s) = 1/|S| for all s,s; € S, then the encoders should
be identical for each value of s;.

Given a collection of optimal encoders and a pair of
estimation accuracies, we next consider the optimal collec-
tion of decoders for the given system. For any s, € S and
b € {0,1}", the receiver will use codeword Ss,.(b) only when
its state estimate equals s, and the channel output equals
b. Thus the optimal collection of decoders must have the

property
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For the case of the squared error distortion measure, the
resulting codeword equals the expected value of z* given
that the channel output is b and the state estimate at the
receiver is s,.. Thus
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where C is a normalizing constant equal to
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Again, the codewords have changed from their tradi-
tional VQ values. Each codeword (;(b) is no longer the
centroid of its encoding region o ! (13), but rather a weighted
average of input values that may be mapped to the given
cell, possibly through channel or estimator error.

Like the optimal encoding rule, the optimal decoding
rule holds for estimators ranging from perfect to nonexis-
tent. In the case of perfect estimation at both the encoder
and the decoder, the codeword values are weighted sums
of the centroids of the encoding regions of the same index
s. (The weighting results from the transition probabilities
associated with the given channel.) In the case of imper-
fect estimation at either the transmitter or the receiver,
the codeword values become influenced by symbols from all
possible encoding regions.

The optimal design algorithm is an iterative descent
technique analogous to the generalized Lloyd algorithms.
We initialize the system with an arbitrary collection of en-
coders {as : s € 8} and decoders {B8; : s € S}. Each
iteration proceeds through two steps, enumerated below.

1. Optimize each encoder for the given collection of en-
coders and decoders.

2. Optimize each decoder for the given collection of en-
coders and decoders.

Each of the above steps decreases the expected distortion.
Since the expected distortion cannot be negative, the algo-
rithm is guaranteed to converge. Since each of the above
steps finds a global minimum, the algorithm as a whole,
when run to convergence, yields a local minimum.

4. EXPERIMENTAL RESULTS

We compare the expected performance of the channel opti-
mized VQ at a variety of estimation accuracies to the per-
formance of standard VQ sent across the same channel. We
set |S| = 2 and P(1) = P(2) = 0.5 in all examples. The
channels considered are binary symmetric channels with
crossover probabilities 0.05 and 0.001. In each case, the
encoder is trained on a collection of 20 medical brain scans
and then tested on a collection of 5 scans outside of the
training set. We use a vector dimension of 4 for all code-
books.

Figure 2 is a graph of the performance of the channel
optimized VQ with encoder and decoder channel estima-
tion ranging from complete knowledge of the channel state
at both encoder and decoder to no knowledge of the chan-
nel state at either the encoder or the decoder. The perfor-
mance of the channel optimized VQ with less than perfect
knowledge of the channel state at both encoder and decoder
always matches (at very low rates) or exceeds the perfor-
mance of the codes which are not optimized for the channel
model. In most cases, the performance of the channel opti-
mized codes with less than perfect knowledge of the channel
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Figure 2: Coding results given channel estimation at the
transmitter and receiver with a variety of accuracy levels.
(Accuracy is defined as the percentage of the time that the
estimator correctly estimates the channel state.)

state is almost identical to the performance of the perfect
knowledge code. Compressed images resulting from joint
source and channel coding codebooks using perfect estima-
tion, no estimation, and a codebook designed assuming no
channel errors (but encoded with the optimum encoder) are
shown in Figure 3.

To better understand the above results, we plot in Fig-
ure 4 the effect of mismatch between the codebook and
channel. In this graph, we compare the rate-distortion per-
formance of a codebook trained for and operated on a chan-
nel with probability of error 0.001 with the performance of a
codebook trained for a channel with probability of error 0.05
and operated on a channel with probability of error 0.001.
Likewise, we compare the rate-distortion performance of a
codebook trained for and operated on a channel with prob-
ability of error 0.05 with the performance of a codebook
trained for a channel with probability of error 0.001 and
operated on a channel with probability of error 0.05. We
notice that on the given data set, the performance suffers
very little when the codebook design is pessimistic (assumes
a higher probability of error than necessary) but quite a bit
when the codebook design is optimistic. Thus we pay lit-
tle in rate distortion performance for adding extra error
protection to our codebook. As a result, there exists a sin-
gle (pessimistic) codebook that does well on both channel
states.

We further observe in Figure 2 that the codebook with
perfect channel knowledge at the transmitter and no chan-
nel knowledge at the receiver shows, at two rates, worse
performance than that of the code with no knowledge at
either transmitter or receiver. This result is clearly a local
minimum problem that could be avoided by initializing the
codebooks in this case with the codebooks from the code
with no knowledge at encoder and decoder.

Finally, Figure 5 shows the results achieved by a simple
modification to the design algorithm. The modification, de-
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Figure 3: Compressed images at .75 bpp. Top row: Orig-
inal, LBG codebook with optimal encoder; Bottom row:
joint source channel codes with no channel estimation and
perfect channel estimation.
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Figure 4: Coding results comparing the performance of a
single codebook trained and tested on channels with prob-
ability of error 0.05 and 0.001.
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Figure 5: Coding results with index optimization compared
to the best performance (100% accuracy at both encoder
and decoder) without index optimization.

scribed next, seems to be quite effective in reducing the al-
gorithm’s problems with local minima. Notice in the above
described algorithm that if we choose the binary represen-
tation associated with a given codeword as some function of
the codeword’s index, then the index choice affects the prob-
ability that a given codeword, when transmitted through
the channel, will be flipped to each other codeword in the
collection. One possible approach towards alleviating our
problems with local minima would be to add a third step to
the design algorithm in which we attempt to improve the
codeword indices (or equivalently their binary representa-
tions). The results of such an addition are chronicled in Fig-
ure 5. As desired, the design algorithm modification seems
to totally alleviate our local minima problem on the given
data set. With complete knowledge of the channel state
at the transmitter and receiver, the channel optimized VQ
achieves up to 9 dB improvement over the standard VQ and
4 dB improvement over the standard VQ codebook with a
channel optimized encoder. The joint codes with imperfect
channel knowledge at the transmitter and receiver achieve
similar gains.
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