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ABSTRACT

This communication describes a method to detect and char-
acterise the independent movement of several rigid objects
in a sequence of images. No model is assumed for the mov-
ing objects, meanwhile a linear model in the image plane is
accepted for the pixels of each object, which can be changed
without loosing of generality. The approach works on each
pair of images. Relevant points are detected on them and
then each moving object is identi�ed as two clusters of simi-
lar relevant points, one per image, that perform a consistent
movement. Di�erently from previous approaches, the con-
sistent movement constraint is incorporated into the cluster
building phase. The main property of the proposed method
is its robustness, since minimal assumptions are assumed.
Results are provided with tests on two di�erent kinds of
scenes: a laboratory one and a natural tra�c scene.

1. PROBLEM DESCRIPTION

The problem of movement estimation and object segmenta-
tion in a video image sequence has been widely analysed in
the literature in the recent years. Time-varying imagery re-
veals valuable information about the environment, since the
world is constantly in motion. Furthermore, some informa-
tion is only possible to be obtained from an image sequence,
not from a single image. For this reason, the analysis of im-
age sequences to estimate 3D motion and scene structure
has been at the heart of computer vision research for the
last decade [13, 9, 5].
One of the di�culties it involves is that the useful con-

tent of an image sequence is intricately coded and implicit
in an enormous volume of sensory data. Making this infor-
mation explicit entails signi�cant data reduction, to decode
the spatio-temporal correlations of the intensity values and
eliminate redundancy.
This paper aims at describing a method for signi�cant

object characteristics extraction and matching based simul-
taneously on spatial intensities and movement constraints.
The method can be applied to a wide range of cases since

a few number of not very restrictive constraints are as-
sumed. First, a single uncalibrated static camera is used.
It is supposed that there are no total occlusions amongst
objects. Objects are rigid and they move independently one
from another. The number of objects in the scene has not
to be constant, that is, objects may enter and quit from
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the scene. Finally, the trajectories and type of movement
of each object are unrestricted. These ideas are developed
in section 2. In section 3 the method is compared with
other approaches. The algorithm is fully described at sec-
tion 4. Results and guidelines for future developments are
explained in section 5.

2. APPROACH

The method is based on two main steps: for each image in
the sequence, the object is located and described by means
of a set of relevant points. The correspondence between the
clusters of relevant points from the same object is estab-
lished by describing the neighbourhood of each point, the
geometry of the cluster and the motion needed in order to
register the �rst cluster onto the second one. Let us see a
detailed exposition:
(i) Firstly, detection of the relevant points in each image

of the sequence has to be done. The concept of relevant
point varies depending on the method used to detect them.
But it essentially refers to points easily identi�able, inde-
pendently from illumination, changes of perspective, etc.
and su�ciently distinguishable from neighbour points. In
our case, these requirements can be accomplished by cor-
ners and centres of circular features. The number of points
detected must be su�cient to characterise the movement of
each object, but small enough to allow fast matching be-
tween each point and its correspondent point in the next
image, if it exists.
Methods tested for point detection have been F�orstner's

method [7] and Wang and Brady corner detector [11]. The
former is based on a model proposed for two kinds of rel-
evant points: corners and centres of circularly symmetric
features. The model for corners supposes that a number of
straight border segments ending in the same image area in-
tersect at an unknown point, whose optimal position, found
by regression, is the corner. By using a similar reasoning
but taking the straight lines which will contribute in the di-
rection of the gradient, as if they were the borders of a hy-
pothetical circle to be found surrounding the points, centres
of circular features are detected, too. On the other hand,
Wang and Brady corner detector tries to �nd points where
the curvature is a maximum and higher than a threshold,
being at the same time the gradient modulus above another
threshold, since a corner always belongs to an edge.
The parameters of F�orstner's method can be adjusted so

as to detect approximately the desired number of points.
On the contrary, Wang and Brady's is more di�cult to ad-
just, but it has a lower computational cost. In synthetic
or controlled images, almost any method works. In real
images, methods adapted to the case must be used.



Notice that, since clusters of relevant points probably cor-
respond with moving objects, isolated relevant points (those
with no neighbour within a given distance) will not be in-
teresting for us, and consequently will be removed. This
maximum distance to the nearest neighbour is related with
the size of the objects in the image, that can be approxi-
mately known in advance. From now on, we consider only
the remaining points.
(ii) Secondly, we pretend to associate to each moving ob-

ject a cluster of relevant points in each image of the se-
quence. The method constructs two of these clusters simul-
taneously, by establishing the correspondence between the
elements of both.
It is obvious that, in order to establish such a correspon-

dence between points, a robust description of the neighbour-
hood of each relevant point (perhaps, invariant against rota-
tions, translations and a�ne changes of intensity) is needed.
The neighbourhood of a point will be described by means
of the autocorrelation function, C(t), which, for stochas-
tic processes with distribution invariant under translations
and rotations, is de�ned as the Pearson's correlation coef-
�cient between random variables (considering as such the
grey level at each point of the grid) observed at locations a
distance t apart [4]. This function and the used estimator
(equation 1) result to be invariant to rigid motions in the
image plane and a�ne changes of intensity.
C(t) has been estimated at t equal to one to six times the

inter-pixel distance by means of
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being W a circular window centred at each relevant point,
T the digital grid of points and I the standardised image,
i.e., I(x) is the original grey level value minus the local
mean (the mean intensity within the window) divided by
the standard deviation. The Epanechnikov kernel has been
used as K-function. It is de�ned as:
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Other kernel functions could have been used, as described
in [12]. The �nal result of this step is a vector of n (in
our case, 6) components attached to each relevant point,
containing the estimations of the autocorrelation function
at distances of 1 to 6 pixels from the point.
As a measure of similarity between pairs of points from

di�erent images, the Euclidean distance between these vec-
tors has been used. Values of this similarity are calculated
for each pair of relevant points. It serves us to discard most
of the possible matchings leaving only a small fraction of
them as we are going to explain. Nevertheless, this does
not happen when the image has several similar regions (see
holes of long Meccano part in example 1, which would be a
pathological example for purely spatial methods).
A point will be matched with one in the next image,

adding both points to their respective clusters. A back-
tracking algorithm will be used, that builds both clusters
at a time. To be included in them, the matching to which
the points belong must be consistent. This means that:

� The vectors of local characteristics of both of its points
have to be similar.

� In the case of being added, both new clusters must have
a similar geometry.

� Finally, the geometric transformations that would lead
from the �rst cluster to the second, with and without
the last pair, are not too di�erent.

Section 4 contains a possible (but not the unique) imple-
mentation of these ideas.

3. JUSTIFICATION OF THE APPROACH

The problem of independent motion of several objects has
been treated in many di�erent ways. We must justify our
solution in front of others.
Against trivial image di�erence methods: they cannot be

applied if any object in the next frame occupies all or part
of the area occupied by a di�erent object in the present
frame. This is very common in car tra�c sequences [8].
Against optical ow methods: in general, they have a

high computational cost [1], and sometimes it is necessary to
apply later split and merge algorithms to fuse all points with
a similar movement direction (points of the same object).
Against other approaches based on the same principle

(detection and matching of relevant points): one of the most
signi�cant works on this �eld is from Shapiro [11] in which:
� The similarity function for establishing initial correspon-
dences is based on correlations between intensities sur-
rounding each point, so they are invariant to a�ne inten-
sity changes (if normalised) but not to rotations.

� Appearance or disappearance of relevant points is treated
in a non elegant way in the form of forced matchings.

� The trajectories of each point in successive images are
assigned to the same object by clustering them after built,
so false matchings represent a potential source of error.
Furthermore, a�nity measures between trajectories are
built supposing a model for object movement in the real
world, which is not always known.

4. IMPLEMENTATION

The following algorithm is a full description of the imple-
mentation of the ideas proposed in section 2.

Step 0 Let n = 1 and (s1; t1) the pair of points (s1 in the
�rst image and t1 in the second image) at minimum dis-
tance, i.e., they are the points whose neighbourhood is
more similar from our chosen point of view (Euclidean
distance between autocorrelation functions, other al-
ternatives can be easily proposed). Let us call C1 and
C2 the respective clusters of points in the �rst and sec-
ond image. We initialise C1 = fs1g and C2 = ft1g.

Step 1 Let us assume that:

(1) fs1; : : : ; sn�1g and ft1; : : : ; tn�1g are the current
pair of corresponding clusters (one per image), being
(si; ti) with i = 1; : : : ; n� 1 the correspondences previ-
ously established.

(2) Let us suppose that si can be written as

si = An�1ti +Bn�1 + �;

where An�1, Bn�1 are 2�2 and 2�1 matrices; � is a 2�
1 random vector normally distributed with null means.

Let Ân�1 = [a
(n�1)

kl ] and B̂n�1 = [b
(n�1)

k ] the least-
squares estimators of An�1 and Bn�1 obtained from
the set of correspondences f(s1; t1); : : : ; (sn�1; tn�1)g.



If the number of current correspondences (n � 1) is
greater than a certain value, the algorithm �nishes (in
the following examples this maximum number of points
has been �xed to 8 points per cluster); else, choose a
pair of correspondent points, (sn; tn), candidates to be
added. To add them, three conditions must be met:

Similar neighbourhood The similarity between sn
and tn is the maximum between the possible corre-
spondences at the present time, i.e., between pairs
of points not previously matched.

Similar geometry The respective Euclidean dis-
tances, measured in the image plane, from the can-
didate sn to si (i = 1; : : : ; n� 1) have to be similar
to the corresponding distances from tn to each ti.
A tolerance level is previously �xed.

Consistent movement Both geometric transforma-
tions must be similar: that determined by the for-
mer points, and that determined by them, together
with the candidate couple. This is clearly equiva-
lent to say that the new pair cannot be an inu-
ential observation. As a measure of the inuence
of a new correspondence, Cook's distance has been
chosen [2, 3]. Other alternative measures can be
found in [6]. Cook [2] proposed that the inuence
for the i-th component (i = 1; 2) of the n-th corre-
spondence be measured by the distance

Di = (b(n)i � b
(n�1)

i )tXt
X(b(n)i � b

(n�1)

i )

where X is the n � 3 matrix whose k-th row is
(stk; 1), X

t is the transpose of X and (b(n�1)
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i ), i.e., b(n�1)

i are the least-
squares estimators of the i-th column of An�1 and
the i-th row of Bn�1 when only the �rst n � 1

correspondences are considered. b(n)i has a similar
de�nition when the n correspondences are consid-
ered. Di is compared with F (3; n � 3; 1 � �=2)
(the 1 � �=2 quantile of a F distribution with
3 and n � 3 degrees of freedom) for a selected
� (a value of 0:05 has been used in section 5).
The last correspondence is an inuential one if
maxfD1;D2g > F (3; n � 3; 1 � �=2). Note that
two di�erent tests have been applied (one for each
component) and a Bonferroni's correction has been
used [10].

If the correspondence (sn; tn) satis�es the just de-
scribed three conditions, then it is added and the new
clusters are updated to C1 = fs1; : : : ; sn�1g[fsng and
C2 = ft1; : : : ; tn�1g [ ftng.
If no matching can be added to the clusters being cur-
rently built, the last matching (sn�1; tn�1) is forbidden
and the algorithm backtracks to �nd new consistent
matchings, until the desired number of matchings per
cluster has been found, or until there are no consistent
matchings to incorporate. We keep the best match-
ing found, i.e., the correspondence between clusters for
which the common cardinality of the cluster is a max-
imum and greater than a minimum level (three points
in the following examples).

Step 2 Relevant points corresponding to the cluster de-
tected in the previous step are removed. If there are no
relevant points in either the �rst or the second image,
the algorithm �nishes. Otherwise, the current clusters
are set to empty sets and we go back to step 0.

Notice that if the projected movement of the real object is
such that it cannot be modelled as a linear geometric trans-
formation, as speci�ed by assumption 2 in step 1, a more
complicated model can be adopted without changing the
essence of the algorithm, since this assumption is only used
in the checking of consistency between matchings, and in
the worst case it is a model of movement in the image plane,
so it can be determined by standard techniques from a suf-
�cient number of labelled samples.

5. RESULTS AND FURTHER
DEVELOPMENTS

The algorithm has been applied to two di�erent kinds of
sequences, from which two frames are shown: an image se-
quence generated in a controlled laboratory environment
and a natural tra�c image sequence. As it has been pre-
viously explained the minimum and maximum number of
points per cluster have been �xed to 3 and 8. In the �rst
case, most of the relevant points, either circular or corner
points, are well detected. No false matching is generated,
and 96% of the possible right matchings are detected, which
proves the robustness of the algorithm. (By clarity, not all
matchings are shown in the �gure).

To check the performance of the algorithm with natural
scenes, a tra�c image sequence was chosen. In this case the
number of interesting points detected and the ratio between
the well-done correspondences and the potential number of
them decreases due to the poor quality of the images. How-
ever, the results show that the algorithm can be likewise
useful in this type of large and not controlled scenes, since
more than 50% of the possible right matchings are found,
which is su�cient to distinguish the cars and estimate their
movement. (In our model, a linear transformation in the im-
age plane, three matchings per object are su�cient). Again,
not all the found matchings are shown.

The previous elimination of isolated relevant points does
not alter the results of the algorithm, but improves the per-
formance, since between 10 and 20% of the initial candi-
dates matchings are removed. Other restrictions adapted
to the particular cases can be used (for example, if it is
known in advance that each point will have moved to fall
into a bounded region).

To impose minimal and maximal cardinalities for the
clusters also reduces computation time. Minimal size is
compulsory, and has to be chosen at least, as the minimal
number of points needed to estimate a transformation under
the chosen model. Maximum size is an option, and is taken
to avoid search at an excessive depth in the tree of possible
matchings. The resulting clusters can be fused later at a
lower computational cost, if they prove to be similar.

Formally speaking, we have two sets of points in di�er-
ent spaces (images in this case) and two di�erent problems:
�rst, to distinguish clusters of points (corresponding in our
case to di�erent objects) and, second, to establish the cor-
respondences between the detected clusters from di�erent
spaces (or images in our application). A problem of clus-
tering and a problem of matching jointly considered. The
proposed methodology tries to solve both questions simul-
taneously. But a question remains unanswered: can this
method be reformulated in the form of a single clustering
(or simultaneous clustering) problem with a particular ma-
trix of similarities (perhaps, related with the movement of
the object)?



6. CONCLUSIONS

A method for multiple rigid motion segmentation has been
designed and tested, which is based on the detection and
matching of relevant points in a sequence of images. The
main novelties consist on the use of local characteristics for
the matching which are invariant under rigid motions and
a�ne intensity changes (the autocorrelation function) and
also the introduction of a check of consistent movement into
the clustering process. Results show the robustness of the
procedure when used in low quality natural images.

Figure 1. Laboratory sequence
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Figure 2. Laboratory sequence


