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ABSTRACT
This paper is concerned with the problem of estimat-

ing the multichannel impulse response function of a 2-D
multiple-input multiple-output (MIMO) system given only
the measurements of the vector output of the system. Such
models arise in a variety of situations such as color images
(textures), or image data from multiple frequency bands,
multiple sensors or multiple time frames. We extend the
approach of Tugnait(1994) (which deals with SISO 2-D sys-
tems) to MIMO 2-D systems. The paper is focused on
certain theoretical aspects of the problem: estimation cri-
teria, existence of a solution, and parameter identi�ability.
An iterative, inverse �lter criteria based approach is devel-
oped using the third-order and/or fourth-order normalized
cumulants of the inverse �ltered data at zero-lag. The ap-
proach is input-iterative, i.e., the input sequences are ex-
tracted and removed one-by-one. The matrix impulse re-
sponse is then obtained by cross-correlating the extracted
inputs with the observed outputs.

1 Introduction
This paper is concerned with the problem of es-

timating the multichannel impulse response function
of a 2-D multiple-input multiple-output (MIMO) sys-
tem given only the measurements of the vector output
of the system. Such (multichannel multidimensional)
models arise in a variety of situations such as color im-
ages (textures), or image data frommultiple frequency
bands, multiple sensors or multiple time frames; see [5]
and [6], and references therein.

Linear parametric models for multidimensional ran-
dom signals have been found useful in many appli-
cations such as image coding, enhancement, restora-
tion, synthesis, classi�cation, and spectral estimation
[7]. A vast majority of this work has concentrated
on exploitation of only the second-order statistics of
the data either explicitly by restricting attention to
the correlation properties of the multidimensional sig-
nal, or implicitly by assuming that the signal is Gaus-
sian. A consequence of this is that either the under-
lying models should be quarter-plane (or, half-plane)
causal and minimum phase, or the impulse response
of the underlying parametric model must possess cer-
tain symmetry (such as \symmetric noncausality"), in
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order to achieve parameter identi�ability [2].

Recently ([1]-[3]) it has been shown that higher-
order cumulant functions of the underlying random
�eld can be exploited (in addition to or in lieu of
the usual second-order statistics) to �t more general
\phase-sensitive" models where one captures both the
system transfer function magnitude as well as the sys-
tem transfer function phase unlike the second order
statistics (mean and correlation functions) case which
depends only upon the system transfer function mag-
nitude. Possible advantages of such modeling in the
context of monochrome texture synthesis using single-
channel 2-D model �tting has been demonstrated in
[2] and [3]. In this paper we extend the approach of
[2] (which deal with SISO 2-D systems) to MIMO 2-D
systems. The paper is focused on certain theoreti-
cal aspects of the problem: estimation criteria, exis-
tence of solution, parameter identi�ability etc. It is
an extension of our recent results on 1-D MIMO sys-
tems reported in [4]. An iterative, inverse �lter crite-
ria based approach is developed using the third-order
and/or fourth-order normalized cumulants of the in-
verse �ltered data at zero-lag. The approach is input-
iterative, i.e., the input sequences are extracted and
removed one-by-one. The matrix impulse response is
then obtained by cross-correlating the extracted in-
puts with the observed outputs.

2 Model Assumptions
Consider a 2-D MIMO system with N outputs and

M inputs. The i-th component of the output at pixel
position (m;n) is given by (i = 1; 2; � � �; N )

yi(m;n) =

MX
j=1

Fij(z1; z2)wj(m;n) + vi(m;n) ;

(2 � 1)
) y(m;n) = F(z1; z2)w(m;n) + v(m;n);

(2 � 2)

where y(m;n) = [y1(m;n)
... y2(m;n)

... � � �
...yN (m;n)]T ,

similarly for w(m;n) and v(m;n), z1 is both, the

backward-shift operator (i.e., z�11 w(m;n) = w(m �
1; n), etc.) and the complex-variable in the 2-D Z-
transform, wj(m;n) is the j-th input at pixel position



(m;n), yi(m;n) is the i-th output, vi(m;n) is the ad-
ditive Gaussian measurement noise, and

Fij(z1; z2) :=

1X
k=�1

1X
l=�1

fij(k; l)z
�k
1 z�l2 (2� 3)

is the scalar transfer function with wj(m;n) as the
input and yi(m;n) as the output.

The following assumptions are made (more restric-
tions are imposed later in Sec. 3.1):

(AS1) The vector 2-D sequence w(m;n) is as-
sumed to be zero-mean and i.i.d. both com-
ponentwise and spatially. Also assume that
fourth-cumulant or the third-cumulant of
w(m;n) is nonzero.

(AS2) If it is an in�nite impulse response (IIR)
model, then (2-2) is assumed to be the
result of a �nite-dimensional multichannel
multidimensional ARMA model such that
the model matrix impulse response func-
tion is exponentially stable. (See also [2].)

3 Estimation Criteria
We assume in the rest of this section that the noise

v(m;n) in (2-2) is negligible. Let CUMr(w) denote
the r-th (r=3 or 4) order cumulant of a zero-mean
random variable w, de�ned as

CUM4(w) = Efw4
g � 3[Efw2

g]2; (3� 1)

CUM3(w) = Efw3
g; CUM2(w) = Efw2

g:
(3� 2)

We will use the notation 
rwi = CUMr(wi(m;n)) and
�2wi = Efjwi(m;n)j2g. Consider an 1 �N row-vector
polynomial equalizer CT (z1; z2), with its j-th entry
denoted by Cj(z1; z2), operating on the data vector
y(m;n) (see (2-2)). Let the equalizer output be de-
noted by e(m;n). We then have

e(m;n) =

NX
i=1

Ci(z1; z2)yi(m;n) =

MX
j=1

Hj(z1; z2)wj(m;n)

(3� 3)
where

Cj(z1; z2) =

1X
k=�1

1X
l=�1

cj(k; l)z
�k
1 z�l2 ; (3� 4)

Hj(z1; z2) :=

NX
i=1

Ci(z1; z2)Fij(z1; z2): (3� 5)

In general, we have

Hj(z1; z2) =

1X
k=�1

1X
l=�1

hj(k; l)z
�k
1 z�l2 : (3� 6)

De�ne hj(m;n) = �wjhj(m;n), 
rwj = 
rwj=�
4
wj and

j
rmaxj := max1�j�M j
rjj. It therefore follows that

CUMr(e(m;n)) =

MX
j=1


rwj

1X
k=�1

1X
l=�1

h
r

j (k; l)

(3 � 7)
It is easy to see that 
2wj = 1 for all j.

Consider the family of cost functions

Jr2(c) := jCUMr(e(m;n))j = jCUM2(e(m;n))jr=2

(3 � 8)
where r is a positive integer such that either r=3 or
r=4. We have from (3-7)

jCUM3(e(m;n))j � j

MX
j=1


3wj

1X
k=�1

1X
l=�1

h
3

j (k; l)j

� j
3maxj

MX
j=1

j
3wjj

j
3maxj

1X
k=�1

1X
l=�1

jhj(k; l)j
3

(3 � 9)
where j
3maxj = max1�j�M j
3wjj. It therefore fol-
lows that

jCUM3(e(m;n))j � j
3maxj

MX
j=1

1X
k=�1

1X
l=�1

jhj(k; l)j
3

� j
3maxj

2
4 MX
j=1

1X
k=�1

1X
l=�1

jhj(k; l)j
2

3
5
1:5

:

(3� 10)
Using (3-7), (3-8), (3-10) and the fact that 
2wj =
1 8j, we have

J32(c) � j
3maxj: (3� 11)

Now
P

j

P
k

P
l h

4

j (k; l) = [
P

j

P
k

P
l h

2

j (k; l)]
2 if

and only if (j0 2 f1; 2; � � � ;Mg)

hj(k; l) = d�(k � k0)�(l � l0)�(j � j0); (3� 12)

where d is some constant, k0 and l0 are some integers,
j0 indexes some input out of the given M inputs, and
�(k � k0) = 1 if k = k0, = 0 otherwise. It therefore
follows that (3-11) holds true with equality if and only
if (3-12) is true with the exception that now j0 should
be such that j
3wj0 j = j
3maxj.

Mimicking the above arguments it is also easy to
establish that

J42(c) � j
4maxj (3� 13)

with equality if and only if (3-12) is true with the
exception that now j0 should be such that j
4wj0 j =

j
4maxj := max1�j�M j
4wjj.

Thus, when (3-12) holds, (3-3) reduces to

e(m;n) = dwj0(m� k0; n� l0): (3� 14)



3.1 Does such a solution exist?
It follows from (3-6) and (3-12) that

Hj(z1; z2) = dz�m0

1 z�n02 �(j � j0) (3� 15)

which when combined with (3-5), yields (j =
1; 2; � � � ;M )

NX
i=1

Ci(z1; z2)Fij(z1; z2) =

�
dz�m0

1 z�n02 if j = j0
0 if j 6= j0:

(3� 16)
From (3-16) we have the matrix polynomial equation

FT (z1; z2)C(z1; z2) = E(z1; z2) (3� 17)

where

F(z1; z2) =

2
664

F11(z1; z2) � � � F1M(z1; z2)
F21(z1; z2) � � � F2M(z1; z2)

... � � �
...

FN1(z1; z2) � � � FNM (z1; z2)

3
775 ;

(3� 18)
and

E(z1; z2) = [ 0 0 � � � 0 dz�m0

1 z�n02 0 � � � 0 ]T :
(3� 19)

Note that the M�column vector E(z1; z2) has the
nonzero entry in its j0-th row with zeros every place
else, and F(z1; z2) is N �M and C(z1; z2) is N � 1.

A set of su�cient conditions for the existence of
the desired solution can be easily deduced from (3-
17). These are

(SC1) N � M , i.e. at least as many outputs as
inputs.

(SC2) RankfF(z1; z2)g = M for any jz1j = 1 =
jz2j.

Consider the solution (* denotes complex conjugation)

C(z1; z2) =

F�(1=z�1 ; 1=z
�
2)[F

T (z1; z2)F
�(1=z�1; 1=z

�
2)]

�1E(z1; z2):
(3� 20)

By Result A.18.2 on p. 655 of [8] and (SC2), the in-
verse in (3-20) exists for any jz1j = 1 = jz2j. Equiv-
alently, det

�
FT (z1; z2)F

�(1=z�1 ; 1=z
�
2)
�
6= 0 for any

jz1j = 1 = jz2j which combined with (AS2) implies

that C(z1:z2) is BIBO stable.
3.2 Stationary Points

As in the 1-D case [4] (see also [9]), we can establish
that all locally stable stationary points of the given
costs w.r.t. the combined composite system-equalizer
impulse response fhj(k; l)g are characterized by solu-
tions such as (3-12) and (3-14) with the exception that
now j0 does not necessarily satisfy j
rwj0 j = j
rmaxj.
Moreover, if doubly-in�nite 2-D equalizers are used

then all locally stable stationary points of the given
costs w.r.t. the equalizer coe�cients are also charac-
terized by solutions such as (3-12) and (3-14). This
suggests an iterative solution where we iterate on in-
puts, one at a time; this is discussed next.

4 Iterative \source separation"
The preceding discussion suggests an iterative so-

lution where we iterate on inputs one-by-one. Maxi-
mization of (3-8) w.r.t. the equalizer C(z1; z2) leads
to the solution (3-14) under the su�cient conditions
(SC1)-(SC2). Implicit in the preceding discussion is
the assumption that C(z1; z2) is allowed to be doubly-
in�nite. Given (3-14) we can estimate and remove the
contribution of wj0(m;n) from (2-1). Then we have
a MIMO system with N outputs but M � 1 inputs
(instead of M inputs as in (2-1)-(2-2)). Repeat the
process, i.e., maximize (3-8) w.r.t. a new equalizer to
get a solution e(m;n) = d0wj0

0

(m�m0
0; n� n00) where

j00 2 (f1; 2; � � � ;Mg�fj0g). This leads to the following
procedure:

1. Maximize (3-8) w.r.t. C(z1; z2) to obtain (3-14).

2. Cross-correlate fe(m;n)g (of (3-14)) with the
given data (2-1) and de�ne an estimate of
fij0(�1; �2) as

bfij0(�1; �2) :=
Efyi(m;n)e(m � �1; n� �2)g

Efe2(m;n)g
:

(4 � 1)
The reconstructed contribution byi;j0(m;n) of
e(m;n) to the data yi(m;n) (i = 1; 2; � � � ;M ),
is

byi;j0(m;n) :=
X
k

X
l

bfij0(k; l)e(m � k; n� l):

(4 � 2)

3. Remove the above contribution from the data
to de�ne the outputs of a MIMO system with N
outputs and M � 1 inputs. These are given by

y0i(m;n) := yi(m;n)� byi;j0(m;n): (4 � 3)

4. If M > 1, set M  M � 1, yi(m;n) y0i(m;n),
and go back to Step 1, else quit.

Analyzing the above algorithm we have

Efyi(m;n)e(m � �1; n� �2)g

=

MX
j=1

Fij(z1; z2)Efwj(m;n)e(m � �1; n� �2)g

= Fij0(z1; z2)d�
2
w�(k0 + �1; l0 + �2)

= fij0(k0 + �1; l0 + �2)d�
2
w: (4 � 4)



Using (4-4) in (4-1) we have

bfij0(�1; �2) = fij0(k0 + �1; l0 + �2)d�
2
w

d2�2w

= fij0(k0 + �1; l0 + �2)=d: (4� 5)

It follows from (4-2) and (4-5) that

byi;j0(m;n) =
X
k

X
l

fij0(k; l)wj0(m � k; n� l):

(4� 6)
For i = 1; 2; � � � ; N , it follows from (4-3) and (4-6) that

y0i(m;n) =

MX
j=1;j 6=j0

Fij(z1; z2)wj(m;n): (4� 7)

5 Optimization
We will use an iterative, batch, steepest descent

(ascent) method for maximization of (3-8). This cost
is invariant to any scaling of the equalizer. In order
to �x this, at every iteration we normalize equalizer
taps to unit norm. Let c denote the vector of equalizer

taps and let bJr2(c) denote the data-based (3-8) with
its explicit dependence upon c.

(0) Let c denote the initial guess which we take to
be \center" tap set to one and all the remaining
taps set to zero.

(i) Set � = 1.

(ii) Calculate c0 = c+�@
bJr2(c)
@c and the resulting costbJr2(c0).

(iii) If bJr2(c0) > bJr2(c), then accept c00 = c0= k c0 k
as the new equalizer tap vector, set c  c00,
and go to (i). Else set � = �=2 and go to (ii).

6 Identi�ability
It follows from the preceding developments (Secs. 3

and 4) that under the conditions (AS1), (AS2) and
(SC1)-(SC2), the proposed iterative approach is ca-
pable of blind identi�cation of a 2-D MIMO transfer
function F(z1; z2) (see (2-1)-(2-4)) up to a time-shift,
a scaling and a permutation matrix provided that we
allow doubly-in�nite equalizers (in both dimensions).
That is, given F(z1; z2), we end up with a G(z1; z2)
where the two are related via

G(z1; z2) = F(z1; z2)DAP (6� 1)

where D is a M �M \spatial-shift" diagonal matrix
(recall (k0; l0) in (3-12)), A is a M �M diagonal scal-
ing matrix (recall d in (3-12)), and P is a M �M per-
mutation matrix (recall j0 in (3-12), we don't \know"
which input it refers to). [A permutation matrixP has
a single nonzero entry (equaling one) in each row and
column, i.e., Pij = 1 if j = ji, and Pij = 0 if j 6= ji,
(i; j = 1; 2; � � � ;M ), where Pij is the ij-th element of
P.]

Theorem 1. Given the model (2-2) such that
v(m;n) � 0 and given the true r-th order cumulant
functions of the model output fy(m;n)g for r=2 and
r=3 or 4, such that conditions (AS1), (AS2) and
(SC1)-(SC2) hold true. Suppose that doubly-in�nite
equalizers are used in steps 1-4 of the iterative proce-
dure of Sec. 4. Then this procedure yields a transfer
function G(z1; z2) satisfying (6-1). �

Remark. The above discussion is couched in terms
of the system impulse response implying an MA model
�tting procedure. It need not be so. As in [2] other
parametric models (AR or ARMA) can be �tted. Use
of \long" MA equalizers to extract driving sequences
wj(m;n) one-by-one has the practical advantage that
all stable stationary points w.r.t. the equalizer coe�-
cients correspond to the desired solution! 2

7 Conclusions
In this paper we extended the approach of [2]

(which deals with SISO 2-D systems) to MIMO 2-D
systems. The paper was focused on certain theoretical
aspects of the problem: estimation criteria, existence
of a solution and parameter identi�ability. Computa-
tional experience using the proposed approach has yet
to be gained.
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