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ABSTRACT

This article addresses the problem of designing two-

channel near-perfect-reconstruction �lter banks over mul-

tidimensional lattices. First, a cosine-modulated �l-

ter structure having arbitrary spatial shift and phase

parameters is considered. The use of this structure

leads to many possible two-channel multirate systems.

The perfect reconstruction conditions are studied and

appropriate choices for the parameters of the cosine-

modulated structure are obtained. A simple but e�-

cient unconstrained procedure for designing (possibly

linear phase) near-perfect-reconstruction �lter banks

having good frequency responses (with arbitrary shapes)

is proposed. A 2D design example is presented. The

�lter banks obtained can be used in transmultiplexers

as well as in subband coders.

1. INTRODUCTION

Since the beginning of multirate theory, the two-channel

case has played an important role in perfect recon-

struction (PR) systems. Usually, one prototype �lter

(low-pass) is considered in the design and the other �l-

ters of the bank are obtained by space reversal and/or

changes in the sign of some coe�cients of that proto-

type [1, 2, 3]. In [1], the crosstalk or alias is zero but

still a constrained optimization procedure is performed

in order to achieve PR. In [4], non-separable �lters are

obtained from 1D �lter banks but arbitrary shapes in

the frequency domain cannot be obtained.

In this article, we improve several theoretical and

design aspects of multidimensional two-channel PR �l-

ter banks. First, we propose a more general structure

for the �lters which leads to more system con�gurations

(a wider choice of modulating frequencies). We show

how to choose appropriate values of the parameters of

such a structure leading to zero crosstalk (or alias) and

good in-band recovery of the signals. We also show how
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to use two prototypes to add freedom while maintain-

ing zero crosstalk (alias). An unconstrained procedure,

based on the N -step Newton method, is proposed to

design near-perfect-reconstruction (NPR) �lter banks.

These �lters can have linear phase (or other symme-

tries such as quadrantal or octantal) and are optimized

for good frequency responses. A 2D design example

is presented which illustrates how the method can be

used to easily design NPR �lter banks having arbitrary

shapes in the frequency domain.

In the context of this article, we are interested in

both transmultiplexing and subband coding. Although

we will present the theory from a transmultiplexing

[5, 6] point of view, it applies to subband coding in

a straightforward manner (since they are dual prob-

lems to each other). Results from lattice theory [7]

will be used extensively in this article and the reader

is assumed to be acquainted with this theory.

2. COSINE-MODULATED FILTER BANK

STRUCTURE

Let s1(x) and s2(x) be two signals de�ned over a lattice

� � � such that1
d(�)

d(�)
= 2. We want to transmulti-

plex s1(x) and s2(x) over �. For this, we divide, in the

frequency domain, a unit cell of �� into two congruent

bands, each occupied by a speci�c signal and congruent

to a unit cell of ��. The centers of these bands, occu-

pied by S1(f) and S2(f), are fc1 and fc2 respectively

(with fc1 � fc2 2 �� n��). The two-channel transmulti-

plexing system is illustrated in �g. 1 (a subband system

is obtained by exchanging the order of the encoder and

decoder). We consider for now the use of one low-pass

prototype �lter g(x). The proposed cosine-modulated

structure for the �lters de�ned over � is:

1A basis vector of � (in a certain basis) has been doubled and

the others kept unchanged to form �.
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Figure 1: Two-channel multi-D transmultiplexer.

bi(x) = g(x� di)

pi(x) = g(x� ei)

fi(x) = bi(x) cos[2�f
T
ci
(x� di)� �i]

hi(x) = pi(x) cos[2�f
T
ci
(x� ei)�  i]

with x;di; ei 2 �; �i;  i 2 R; and i 2 f1; 2g:

(1)

The introduction of spatial shifts di and ei and

phases �i and  i leads to some freedom allowing both

crosstalk elimination and good in-band recovery.

As in [5], we choose2 fci 2
1
2
�� 8i. The modulating

frequencies of the �lters are chosen as (for i 2 f1; 2g):

fci = qi + l; with �� =

2[
l=1

(�� + ql); l 2
1
2
��: (2)

This leads to 2D (the number of cosets in D dimen-

sions of �� in 1
2
��) possible systems, i.e. combinations

of modulating frequencies, depending on vector l. Since

� � � and
d(�)

d(�)
= 2, it follows that:

2� � �) �� �
1

2
�� ) qi 2

1

2
��; since qi 2 ��, 8i

This implies that

fci = (qi + l) 2
1

2
�� i� l 2

1

2
��: (3)

3. PERFECT RECONSTRUCTION

CONDITIONS

The perfect reconstruction conditions are studied from

two points of view: crosstalk elimination and in-band

recovery of each signal. For both points of view two

cases must be studied: l 2 1
2
�� and l 62 1

2
��. For both

cases, we show that crosstalk elimination is possible

and we give explicit parameter conditions (i.e. condi-

tions on di, ei, �i and  i) yielding such a result. We

also give parameter conditions permitting in-band re-

covery. These values don't automatically yield perfect

reconstruction although crosstalk is zero. The same

situation arises in [1]. Optimization procedures, which

will be described in section 5, must be used in order to

obtain NPR.

First, we write the expressions of equation (1) in the

frequency domain. Using Fourier transform properties

2For lattice � having sampling matrix V, we denote by 1

K
�

the lattice having sampling matrix 1

K
V (i.e. each basis vector

has been divided by scalar K).

[7] and the identity cos(�) = 1
2
[ej� + e�j�] it follows

easily for i 2 f1; 2g that:

Fi(f) =
1
2
e�j2�f

Tdi
�
e�j�iG(f � fci) + ej�iG(f + fci)

�
Hi(f) =

1
2
e�j2�f

T ei
�
e�j iG(f � fci) + ej iG(f + fci)

�
(4)

Throughout this section, we will study the transfer

function Tim(f) from signal i to signal m de�ned as

(from �gure 1 and lattice theory results [7]):

Tim(f) = [Fi(f)Hm(f)] # �

= 1
2

2X
l=1

Fi(f � ql)Hm(f � ql)
(5)

3.1. Crosstalk elimination (case l 2 1
2
��)

Since from (3), 2fci 2 �� and since G(f) is ��-

periodic, it follows that G(f) = G(f + 2fci), 8i. Using

(2) and (4), we can write (5), for i 6= m, as [6]:

Tim(f) =
1
2
cos(�i) cos( m)G(f � l)G(f � fc1 � fc2

+l)e�j2�f
T (di+em)

h
ej2�q

T

1
(di+em) + ej2�q

T

2
(di+em)

i
To eliminate the crosstalk, we can't choose cos(�i) =

0 or cos( m) = 0 since the recovery of each signal would

not be possible then (see subsection 3.3). We should

instead make the term in brackets equal to zero:

ej2�q
T

1
(di+em) + ej2�q

T

2
(di+em) = 0

) ej2�(fc1�fc2 )
T (di+em) = ej�

) (fc1 � fc2)
T (di + em) =

(2k+1)

2
; k 2 Z

Since fc1 � fc2 2 ��, we must choose di + em 2 1
2
� n�

such that 2(fc1 � fc2)
T (di + em) is odd. Thus, we

completely eliminate the crosstalk if we choose:

1. d1+e2 2
1
2
� n� with 2(fc1 � fc2)

T (d1+e2) odd.

2. d2+e1 2
1
2
� n� with 2(fc1 � fc2)

T (d2+e1) odd.

We can show that solutions always exist [6].

3.2. Crosstalk elimination (case l 62 1
2
��)

In this case, from (3), we have for i 6= m:

fci + fcm = (qi + qm)| {z }
62��)2��n��

+ 2l|{z}
2��n��

2 ��

since there are only 2 cosets of �� in ��. Using this

fact, we write (5) (after some manipulations [6]) as:

Tim(f) =
1
4

2X
l=1

e�j2�(f�ql)
T (di+em)

h
cos(�i +  m)G(f

�fci � ql)G(f + fci � ql) +
1
2

�
e�j(�i� m)+

ej(�i� m)ej2�(2fci )
T (di+em)

�
G2(f � fci � ql)

i
Thus, to completely eliminate the crosstalk,

we can make the two terms in brackets equal to zero

by setting3 (8i 6= m):

3In this case, di+em must be such that 4fTc
i

(di+em) is odd

to also satisfy conditions for in-band recovery.



1. �i +  m =
(2k+1)�

2
; k 2 Z

2. �i �  m = ��
2

�
4fTci(di + em)� 1

�
+ l�; l 2 Z

3.3. In-band recovery (case l 2 1
2
��)

In this case, expansion of (5) gives

Tii(f) = 1
4

2 cos(�i) cos( i)z }| {
[cos(�i �  i) + cos(�i +  i)]

2X
l=1

G2(f

�fci � ql)e
�j2�(f�q

l
)T (di+ei)

We want to obtain the same recovery expression for

the two signals (i.e. to have T11(f) = T22(f)). For this

we set d1 + e1 = d2+ e2 = c 2 �. We then can obtain

uniform in-band recovery if the following conditions

are met:

1. �1 6=
(2k+1)�

2
, k 2 Z and  1 6=

(2l+1)�

2
, l 2 Z.

�2 6=
(2r+1)�

2
, r 2 Z and  2 6=

(2s+1)�

2
, s 2 Z.

2. �1 +  1 = �(�2 +  2)

3. �1 �  1 = �(�2 �  2)

4. d1 + e1 = d2 + e2 = c 2 �.

3.4. In-band recovery (case l 62 1
2
��)

In this case, we have [6]:

Tii(f) =
1
8

2X
l=1

e�j2�(f�ql)
T (di+ei)

h
e�j(�i+ i)G2(f

�fci � ql) + ej(�i+ i)G2(f + fci � ql)

+2 cos(�i �  i)G(f � fci � ql)G(f + fci � ql)
i

We can prove [6] that we obtain uniform in-band

recovery if the same conditions as those of the previ-

ous subsection are met except for the second one which

should be written as:

2. �1 +  1 = �(�2 +  2)

For a transmultiplexing system to possess good per-

formance, we have to combine the conditions for crosstalk

elimination and in-band recovery. Solutions to both

sets of conditions are easily obtained. In the case l 2
1
2
��, we can choose �i and  i as multiples of �. In the

case l 62 1
2
��, we must choose �i and  i as odd mul-

tiples of �
4
. In both cases, di and ei can't be zero for

all i. Note the important role these spatial shifts are

playing in crosstalk elimination.

4. THE USE OF TWO PROTOTYPES

We now introduce the use of two prototype �lters g1(x)

and g2(x) by modifying in (1) the following:

b1(x) = g1(x � d1) b2(x) = g2(x� d2)

p1(x) = g2(x � e1) p2(x) = g1(x� e2)

Since crosstalk expressions contain only one proto-

type at a time, the conditions presented in the previous

section regarding crosstalk remain valid. Indeed, from

(5), we see that T12(f) is function of G1(f) only and

T21(f) is function of G2(f) only.

The advantage of using two prototypes is that, while

zero crosstalk is maintained, the 
exibility for in-band

recovery is increased. Indeed, with one prototype, we

want nii(x) = g(x) � g(x) to be a Nyquist �lter with

respect to �; i.e. having the property that nii(x) = 0

8x 2 � n f0g. This is more constrained than designing

a Nyquist �lter nii(x) = g1(x) � g2(x). In fact, we do

get better results in the latter case.

5. DESIGN OF

NEAR-PERFECT-RECONSTRUCTION

TWO-CHANNEL FILTER BANKS

We now propose an unconstrained optimization proce-

dure, based on the N -step Newton method, to design

two-channel near-perfect-reconstruction �lter banks.

The procedure is carried out in two steps:

1. Optimize the frequency responses of the �lters

(g(x) or g1(x) and g2(x)) using the procedure

described in [5] (convex problem).

2. Add a perfect-reconstruction spatial domain er-

ror function4 (just the recovery aspect has to be

considered) to the above procedure and continue

optimization.

We have designed a 2D �lter bank using such a pro-

cedure. We designed cross-shaped frequency responses

to show that the procedure works for any desired shape

in the frequency domain. The sampling lattices for

i 2 f1; 2g are as follows:

� = LAT

��
1 0

0 2

��
) �� = LAT

��
1 0

0 1
2

��

�i= LAT

��
2 1

0 2

��
) ��i = LAT

��
1 1

2

0 1
4

��

The modulating frequencies are chosen as:

fc1 = [0; 0]T ; fc2 = [ 1
2
; 1
4
]T

An appropriate choice of parameters is:

�1 = 0;  1 = 0; d1 = [1; 0]T ; e1 = �[1; 0]T

�2 = 0;  2 = 0; d2 = [0; 0]T ; e2 = [0; 0]T

We designed �lters with quadrantal symmetry hav-

ing 84 independent coe�cients (14 � 6) for analysis

and synthesis. The normalized magnitude responses of

analysis and synthesis �lters for signal 1 are shown in

�gure 2 (a) and (b). Filters for signal 2 are just modu-

lated versions of these �lters. As we already mentioned,

4The objective is to have tii(x) = �(x), i.e. 1 if x = 0 and 0

otherwise.



the crosstalk is canceled. The recovery obtained, us-

ing two prototypes, is excellent for video applications

(NPR is achieved) and is shown in �gure 2 (c).

6. CONCLUSIONS

In this article, we studied the problem of designing two-

channel NPR modulated �lter banks. We presented

�lter structures which allowed exactly zero crosstalk

between signals (regardless of the order of the �lters)

and a good in-band recovery by proper choice of pa-

rameter values. The choice of these parameter values

has been studied in detail. We saw that some freedom

in the design can be obtained by using two prototype

�lters. We �nally proposed a design procedure for ar-

bitrary passbands that leads to good results as showed

in a design example.
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(a) Magnitude response of F1(f).
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(b) Magnitude response of H1(f).
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(c) Magnitude response of Tii(f); i = 1; 2.

Figure 2: Normalized magnitude responses (in dB) of

designed �lters (F1(f) and H1(f)) and transfer func-

tions (T11(f) = T22(f)) of the 2D two-channel system.


