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ABSTRACT

We develop computationally fast and storage e�cient im-

plementations for the Kalman-Bucy �lter (KBf) for data

assimilation problems with large time varying multidimen-

sional �elds. We refer to them as the block KBf (bKBf) and

the localized block KBf (lbKBf). For �elds de�ned on a 2D

lattice of linear dimension I, the bKBf reduces the compu-

tational complexity of the KBf by O(I). The lbKBf saves

further on computations by a factor of I and decreases the

storage requirements by O(I). We illustrate the lbKBf in

assimilating satellite measurements in physical oceanogra-

phy, presenting simulations for an equatorial beta plane.

1. INTRODUCTION

In this paper, we develop computationally practical and

storage e�cient recursive signal processing algorithms for

multidimensional physical systems, modeled by partial dif-

ferential equations (pde). We are motivated by problems

of reconstructing image �elds in physical oceanography like

ocean velocity or sea surface height by coupling the un-

derlying models describing the dynamics of the �eld with

the sparse measurements. In Physical oceanography these

problems are referred to as data assimilation, [1].

A major challenge in reconstructing time and spatially

dependent �elds is the large dimensionality associated with

these problems. This curse of dimensionality precludes the

direct application of recursive �ltering algorithms like the

Kalman-Bucy �lter (KBf) to reasonably sized domains. We

develop a computationally e�cient implementation of the

KBf, referred to as the block KBf (bKBf). It takes advan-

tage of two unique aspects associated with these problems.

First, the �elds that we reconstruct are described by models

obtained from the discretization of pdes (dpde). The dpde

models are localized. This is re
ected in the block banded

structure of the system matrices, with blocks themselves

banded and sparse. Second, the measurements are sparse.

We are concerned with undersample scanned data, like al-

timetry data collected by an orbiting satellite.

For �elds de�ned on a 2D lattice of linear dimensions

I, the bKBf reduces the computational complexity of the

KBf by a factor of I. To obtain further savings, we approx-

imate the error �eld associated with the bKBf as a �rst

order Gauss Markov random �eld (GMrf). The resulting

KBf implementation is called the local block KBf (lbKBf)

which reduces by an additional factor of I, the computa-

tional complexity of the bKBf. The storage requirements

are O(I3), reduced from O(I4) for the KBf.

We apply the lbKBf to estimate the ocean circulation

�elds in physical oceanography. The physics underlying

ocean circulation are captured by nonlinear di�erential

equations, which under a standard set of assumptions are

of the Navier Stokes (NS) type, [2]. Remote sensing image

data of the Earth's surface, acquired from either spacecraft

platforms or satellites, is used to calculate maps for the

sea surface height. We combine the sparse satellite mea-

surement with the model dynamics to estimate the ocean

circulation. We generate a video depicting the circulation

�elds over time.

The paper is structured as follows. In section 2, we discuss

the Dpde models. In section 3, we describe the multiple

scanned measurements. In section 4, we derive the lbKBf

which is later used for data assimilation in the equatorial

beta plane. Finally, in section 6, we conclude the paper.

2. STATE MODELS: DISCRETIZED PDES

We discretize linear models of the type
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where L is a pde linear operator and g is the forcing term

which may include random e�ects.

In physical sciences, such models arise in various con-

texts. First, for an inviscid, isentropic, shallow water mo-

tion on an equatorial beta plane (the plane within latitudes

of 30�), the ocean circulation is modeled by coupled pdes,

which are linear and of the type (1). See [2] for details.

For more general nonlinear models, we decouple the �eld

in a deterministic and a random component. The model

nonlinearities are taken care of by the deterministic com-

ponent, which represents the underlying trend. Given ini-

tial and boundary conditions, the trend is constructed by

integrating a deterministic nonlinear version of the model

equations. The random component represents the natural

variability of the �eld away from the deterministic compo-

nent. A set of stochastic pdes obtained by linearizing the

model equation, is coupled with the available data to con-

struct the random component. These stochastic pdes are

similar to (1).

In our data assimilation algorithms, we assume linear

models of type (1). For nonlinear systems, we use the de-

coupled approach just described to linearize the random



component of the modeling equations. In the latter case,

the linear models are coupled with the measurements to

estimate via the local block KBf (lbKBf) the correction

needed in the deterministic predictions.

Discretizing (1) results in dpde models of the type

	
(k+1)

= A	
(k)

+ CW
(k)

(2)

where 	 is obtained by stacking in lexicographic order the

�eld vectors on top of each other. Similarly, the input vector

W is obtained by stacking the forcing term g values. See, for

example, [3], where the linear pdes modeling the equatorial

beta region are discretized by the Lax-Friedrich method.

The vector W (k) is modeled as a zero mean, white Gauss

noise with covariance

E [W
(k)
W

(l)
] = Q�kl

where E is the expectation operator. Equation (2) is the

dpde model. We refer to it as the state equation. Borrowing

terminology from Systems Theory, we call A the state ma-

trix and C the input matrix which are both block banded,

block Toeplitz, and sparse. The block bandwidth of the

state matrix A depends on the order of the spatial di�eren-

tial operator L and on the numerical discretizing schemes.

For pdes with up to second order partial derivatives in space

and using a �rst or second order �nite di�erence scheme,

the state matrixA is block tridiagonal; with up to fourth or-

der spatial di�erential operators, A is block pentadiagonal,

and so on for higher orders. In the following discussion, we

assume that the maximum order of the spatial derivatives

in L is 2. The state matrix A is, therefore, block tridiago-

nal with the lower diagonal block entries given by B1, the

diagonal entries by B2, and the upper diagonal entries by

B3. The input matrix C is assumed diagonal with blocks C.

Applications in the physical sciences usually deal with

coupled �elds. For multiple �elds, the structure of the mod-

eling equation, (2), remains essentially the same, except

the dimensions of the �eld vector 	 increase accordingly.

Although the results presented below are fairly general, in

our discussion, we restrict ourselves to a scalar �eld de�ned

on a 2D grid with dimensions I � J .

3. SCANNED MEASUREMENTS

In physical oceanography, instrumentation on board orbit-

ing satellites measure, for example, sea surface height (SSH)

or sea surface temperature (SST). We assume that during

each scan the �eld characteristics do not change signi�-

cantly. In other words, in a single pass, we assume that the

satellite scan is instantaneous. On the other hand, over suc-

cessive scans, the �eld may change signi�cantly. The satel-

lite scans are analogous to the scanning in the video moni-

tors. In interlaced video displays, images are scanned every

other row at a time, say, the even numbered rows, �eld

1, �rst, and then the remaining odd numbered rows, �eld

2. At each time instant, the observations are at spatially

separated points along a single row of the tow dimensional

image. Similarly, at each time instant, an orbiting satellite

scans a single row of the physical �eld.

Assume that the satellite scans instantly N rows, say

rows m, : : :, p, of the �eld 	. Alternatively, we may have

more than one satellite. In the latter case, the rows are

isolated and far apart. Assume that N rows, say m;n; :::; p

with m < n::: < p, are scanned. The measurement model

is given by

Y
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(k)

	
(k)

+ �
(k)

(3)

=

2
64

�
(k)
m 	

(k)
m

...

�
(k)
p 	

(k)
p

3
75+

2
64

�
(k)
m

...

�
(k)
p

3
75 :

The associated covariances are

E [�
(k)
m �

(l)
p ] = Rmp�mp�kl:

4. LOCALIZED BLOCK KBF

To reconstruct the �eld, we assimilate the measurements of

section 3 to the dynamical dpde model, (2), via Kalman-

Bucy �ltering (KBf). Direct application of the KBf is com-

putationally prohibitive. In the block KBf (bKBf), we par-

tition all vector and matrix quantities in the �lter according

to the block structure of A and of the other model matri-

ces. We partition, for example, the error covariance matrix

P into blocks fPi1i2g's which denote the cross-covariance

between rows i1 and i2 of the error �eld, i.e.,

Pi1i2 = E [(	i1 � b	i1)(	i2 � b	i2)
T
]:

We expand the �lter equations into these partitioned quan-

tities and exploit the sparse structure of the measurements.

The predictor equations use the tridiagonal structure of the

state matrix A. The bKBf for multiscan measurements is:

Predictor update: 1 � i � I

b	i(k+1 jk) =

3X
�=1

B�
b	i+��2(k jk) (4)

Predictor covariance update: 1 � i1; i2 � I; I

Pi1i2 (k+1 jk) =

3X
�1;�2=1

B�1Pi+�1�2 i+�2�2B�2 (k jk) (5)

+ CQC
T
�i1i2

Filter update: 1 � i � I

b	i(k+1 jk+1) = b	i(k+1 jk) + (6)
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where �(k+1) is a J � NJ matrix and �(k+1) a matrix of

order NJ , given by
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with fPi1i2g's on the right hand side measured at (k+1 jk).

The bKBf reduces over KBf the computational require-

ments by a factor of I. To improve further, we approximate

the error �eld, � = 	 � b	, at each iteration as a Gauss

Markov random �eld. We call the approximate implemen-

tation as the local bKBf (lbKBf). Using results in [4], the

blocks fPi1i2g's are related by

Pi1i2 =

8>>>><
>>>>:

i1Y
�=i2�2

(P
�1
�+1�+1P�+1� )

TP T
i2i2�1

for 1� i1�(i2�2)

Pi1i1�1

i2Y
�=i1�2

(P
�1
�+1�+1P�+1� ) for (i2+2)� i1�I:

In the lbKBf we update only fPiig's and fPii+1g's. Any

other blocks fPi1i2g's if required may then be obtained

from blocks fPiig's and fPii+1g's using the above equation.
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(c)Fig. 1: Comparison between mesh plots of the sea surface

height obtained from: (a) the nature run, (b) the determin-

istic run, and (c) the data assimilated run. The plots on

the left hand side are at the start of data assimilation and

those on the right, are 7 days and 9 hours later.

4.1. Computation Count

Although the appearance of bKBf is rather formidable, the

bKBf is computationally much simpler than the standard

implementation of KBf. The reason is because bKBf deals

with I�I blocks rather than I2�I2 blocks. The two major

matrix operations involved in the algorithm are multiplica-

tion and inversion, which for an I � I matrix are both of

order O(I3). For a lattice of size 103 � 103, instead of the

inversion and multiplication of a 106� 106 error covariance

matrix P, we need to invert and multiply 106 matrices of

103 � 103, which represents a reduction of 103 in the op-

eration count respectively. Further, reduction is provided

in the lbKBf. In the lbKBf, instead of updating and stor-

ing the error covariance matrix P which for the lattice size

considered earlier is an I2 � I2 matrix, we update I blocks

Pii and I�1 blocks Pii+1 which are all I� I matrices. This

reduces overall the computations by O(I2), i.e., a factor of

106 for the lattice size considered earlier.

4.2. Storage

Since in the lbKBf, instead of storing the error covariance

matrix P, we store I blocks Pii and I� 1 blocks Pii+1,

the storage requirements are also decreased from O(I4) to

O((2I�1)I2), a reduction by a factor of I over the conven-

tional KBf.

5. EXPERIMENT

A twin experiment for the equatorial channel version of the

Paci�c ocean modeled by the Beta-plane approximation, is

performed. The �elds that we reconstruct, are sea surface

height (SSH) and the velocity components (u,v). The ocean

basin is rectangular with dimensions 1500 km in the east-

west direction and 200 km in the north-south direction.

The resolution in the east-west direction, �x, is 50km (1=2�

longitude) and in the north-south direction, �y, is 20 km

(1=6�l atitude). The time step, �t, is 120 s, which satis�es

the stability bounds. The ocean depth, H, is 1 km. The

speci�c volume of the sea water is 9:7582 � 10�4 m3kg�1.

The model is run by an east-west surface wind stress X and

a north-south wind stress Y ,

X = �Xm sin
�x

a
cos

�y

b
; Y = Ym cos

�x

a
sin

�y

b
(10)

where Xm and Ym are 1N/m2, a is 1500 km and b 200 km.

Before assimilating data, we ran two versions of the Beta-

plane model over a period of 140 days (100,000 iterations).

One version simulates the actual conditions and is called

the \nature run". We add to the wind stresses (X;Y )

white Gaussian noise corresponding to 12 dBs of signal to

noise ratio (SNR). The other version, models deterministic
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Fig. 2: Relative mean square error for sea surface height

data assimilation as a function of model time in hours. Solid

curves are with no data being assimilated. Dashed curves

are with assimilation of sea surface height.

predictions and is called the \deterministic" setup. It prop-

agates simply (X;Y ). Fig. 1 shows the \nature" and the

\deterministic" SSHs at the end of 140 days run.

We consider two satellites whose orbits are o�set in space

by half the width of the ocean domain in consideration.

The satellites measure the SSH at spatially separated points

along the rows of the ocean domain. Each satellite follows

the scan pattern of Topex/Poseidon [5]. The �rst satellite

begins its scans from row 1 and scans every �fth row, i.e.,

it measures SSH along rows 1, 6, 11, and so on till the

entire ocean basin is covered. In the second orbit, rows

2, 7, 12, and the corresponding higher numbered rows are

scanned. Similarly, for the next orbits. For a grid of dimen-

sions I�J , the second satellite starts from rows J=2+1 and

follows the non-recurrent scan pattern explained above for

the �rst satellite. The ocean domain that we consider has

dimensions 31 � 11. Row 16 is, therefore, scanned �rst by

the second satellite. We now assimilate the SSHs obtained

from these satellites into the deterministic model explained

in section 2.

The experiment presented above was performed to em-

phasize the usefulness of data assimilation and the improve-

ment it o�ers over predictions regarding ocean circulation

solely based on integrating the OGCM with assumed initial

conditions, boundary conditions, and external forcings. We

compare �rst the subjective quality achieved by data as-

similation techniques and later comment on resulting mean

square error (MSE).

5.1. Qualitative Comparison

The SSH assimilated with the satellite scanned data are

better estimates of the actual state conditions, in our case

the real world run, than the �elds predicted by the OGCM

referred to as the deterministic �elds. A visual comparison

of �g. 1 illustrates this point. The deterministic �elds do not

capture much of the �ner details and of the high frequency

features such as troughs and crests. In fact, the determin-

istic �elds are a low pass version of the real world SSH.

The SSH's produced by the assimilation algorithm improve

on the frequency contents of the reconstructed �elds. The

assimilated �elds are visually closer to the actual �elds.

5.2. Quantitative Comparison

The MSE plots presented in �g. 2 illustrate that the data

assimilation run (dashed curve) has smaller MSE than the

deterministic run with no data assimilation. In fact, the

errors are about half the errors that those in the \deter-

ministic" run.

6. SUMMARY

The paper develops a computationally fast and a storage

e�cient implementation of the KBf for �ltering and pre-

diction of time and space dependent signals. The resulting

algorithm, the lbKBf, simpli�es the computations by O(I2)

and reduces the storage by O(I) for a grid of size I � I.

We apply the lbKBf to estimate ocean circulation �elds

speci�cally the sea surface height in Physical Oceanogra-

phy. In our experiment, we assimilated data from two di�er-

ent satellites 
ying in the same orbit with no o�set in time

but separated in space by half the ocean domain. The satel-

lites follow Topex/Poseidon scanning pattern. The �elds

reconstructed by assimilating satellite data via the lbKBf

based algorithm provide better estimates of the actual con-

ditions than the �elds obtained from numerical simulation

of the physical model. The latter is the same as the predic-

tions provided by the OGCMs. A study based on the MSE

illustrates quantitatively this gain.
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