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ABSTRACT

Features derived from the trispectra of DFT magnitude
slices are used for multi-font digit recognition. These fea-
tures are insensitive to translation, rotation, or scaling of
the input. They are also robust to noise. Classi�cation
accuracy tests were conducted on a common data base of
256�256 pixel bilevel images of digits in 9 fonts. Randomly
rotated and translated noisy versions were used for training
and testing. The results indicate that the trispectral fea-
tures are better than moment invariants and a�ne moment
invariants. They achieve a classi�cation accuracy of 95%
compared to about 81% for Hu's moment invariants and
39% for Flusser/Suk a�ne moment invariants on the same
data in the presence of 1% impulse noise using a 1-NN clas-
si�er. A multilayer perceptron with no normalization for
rotations and translations yields 34% accuracy on 16�16
pixel low-pass �ltered and decimated versions of the same
data.

1. INTRODUCTION

1.1. Higher-Order Spectral Features

Higher-order spectra [1] were introduced as spectral repre-
sentations of cumulants or moments of stationary processes,
and are useful in the identi�cation of nonlinear and non-
Gaussian random processes. Higher-order spectral repre-
sentations of real-valued deterministic signals [2, 3, 4] may
also be expressed as products of Fourier coe�cients. For ex-
ample, the bispectrum, B(f1; f2), of a real-valued sequence,
x(n), may be de�ned by

B(f1; f2) = X(f1)X(f2)X
�

(f1 + f2) (1)

where X(f) is the discrete-time Fourier transform of the
sequence at frequency f . The trispectrum may similarly be
de�ned as

T (f1; f2) = X(f1)X(f2)X(f3)X
�

(f1 + f2 + f3) (2)

The bispectrum is a function of two frequencies and the
trispectrum is a function of three frequencies. In contrast
to the power spectrum, these functions are complex-valued
in general and retain some of the phase information in the
Fourier transform. In particular, for asymmetric sequences
the phase is nonlinear and higher-order spectra retain the
nonlinear phase information. Like the power spectrum, they
are una�ected by a translation of the input. Because of
these properties higher-order spectra have been used in pat-
tern recognition [4, 5, 6].

1.1.1. Features from 1D patterns

Bispectral invariant features are de�ned in reference [4].
Trispectral features [7] are similarly de�ned as

P (�; �) = arctan

�
Ii(�; �)

Ir(�; �)

�
(3)

where

I(�; �) = Ir(�; �) + jIi(�; �) =

Z 1
1+�+�

f1=0
+

T (f1; �f1; �f1)df1

(4)
is the integral along a line in trifrequency space with slope
determined by � and �. The region of trifrequency space
used for feature calculations is shown in �gure 1. The inte-

,, 0)0( 0

,, 0)1( 0

( /1 3, , )/1 3 /1 3

( /1 2 0,, )/1 2

f1

f3

f2

=
= β

αff
f f
2

3 1

1

Figure 1. Trifrequency space showing the region
used for feature calculations. The frequency axes,
f1; f2; and f3 are normalised by the Nyquist fre-
quency.

gration preserves the translation invariant property of the
trispectrum. Invariance to DC level shift is gained by in-
tegrating only along lines for f1 greater than zero. Scale
invariance is also achieved because scaling of the sequence
x(n) will result in a scaling of the Fourier transform. The
magnitude of I(�; �) will be changed, but the phase will
remain the same. Similarly an ampli�cation of x(n) will
change only the magnitude, not the phase, of I(�; �). For-
mal proofs of invariance properties can be found in refer-
ence [4].

1.1.2. Indirect Procedure Using the DFT Magnitude

Finite width patterns are not strictly bandlimited. Scale
invariance relies on the �nite bandwidth property. Con-
sequently, to make the features from �nite width patterns
better invariant to scale an indirect procedure is adopted.
The pattern is discrete Fourier transformed and the positive
frequency half of the transform magnitude is used as the in-
put sequence for feature extraction instead of the original
pattern itself. The power spectrum may be used in place of
the DFT magnitude, as there is a one-to-one relationship
between the two. The transform of this new sequence is
an analytic function whose real part is the autocorrelation
of the original input sequence and whose imaginary part is



the Hilbert transform of the autocorrelation of the original
input sequence (except for an amplitude scale factor of 1=2
in each case). This sequence is then used in the products
de�ning the bispectrum and the trispectrum in equations 1
and 2.
This procedure results in a loss of uniqueness for 1D pat-

terns, and the inability to distinguish between x(n) and
x(�n). However, the direct procedure can always be used
in combination to retain uniqueness if necessary, as is done
for the classi�cation of 6 and 9 in this work. The sign of
the bispectrum or the trispectrum (as de�ned in equations
1 and 2) depends on the left or right asymmetry of the input
sequence.

1.1.3. Features from 2D images

An algorithm for 2D object recognition using features
derived from the bispectrum was introduced in [6]. It de-
composes the image into a set of one-dimensional functions
via the Radon transform. The Radon transform projections
have the following properties

(a) a shift in the 2D image results in a shift in every pro-
jection, except for the one parallel to the direction of
the shift, which is unchanged,

(b) a scale change of the 2D image in the direction of pro-
jection results in multiplication of the 1D projection by
a constant,

(c) a scale change of the 2D image perpendicular to the
direction of projection results in a scale change of the
1D projection, and

(d) a rotation of the 2D image results in a cyclic shift in
the set of projection functions.

The algorithm can also use trispectral features and extract
P (�; �) from the projections. These features are invariant
to translation, scaling, and ampli�cation of the 1D projec-
tions. They provide a set fP (�; �)(�)g of 1D functions of
�, invariant to translation, scaling, and ampli�cation of the
image. Regrouping the features for each (�; �) pair results
in sets of one-dimensional functions of � where rotation of
the image is equivalent to a translation of these sequences.
A second stage of invariant feature extraction from these
sequences will produce a new set of features P (�; �; ; �)
that also provide invariance to rotation of the image.

1.1.4. Previous work on trispectral features

The algorithm was extended to trispectral features in [7]
and compared with Hu's moment invariants [8]. The focus
of these studies was on testing the immunity to various
types of noise. Based on cluster plots and accuracy results,
trispectral features were shown to be better than moment
invariants [9] in the presence of Gaussian, Uniform, and
Rayleigh iid noise.

2. MULTIFONT DIGIT RECOGNITION

The present study investigates the discriminating power of
the trispectral features using the problem of multifont digit
recognition. A prototype data base of 9 printed fonts and 10
digits in each font was created. Each prototype was an im-
age of 256 � 256 pixels, and bilevel with grelevels 0 or 255.
For training and testing, 3 randomly translated and rotated
versions of each prototype were created. Random impulse
noise was added to generate 4 noisy versions of each digit
in each font and each orientation. The e�ect of the impulse
noise used is to set any pixel to the maximum greylevel of
255 with a prescribed probability. E�ectively, a prescribed
number of pixels, such as 1%, get set to this value. This
yielded 144 realizations per digit. Since most arti�cial neu-
ral networks do not accept large sized inputs, a second data
base of the same size was created by lowpass �ltering and
decimating the clean images to 16x16 pixels. These images

Figure 2. The digit `1' in each of the nine fonts
used.

were greylevel in the range 0 to 255. The same level of
impulse noise was also added to the decimated images. Ac-
curacy results were obtained by using 3 orientations to train
and the fourth orientation to test. Confusion matrices for
each of the four possible splits of the data were averaged
to obtain the results shown in the tables. Since 6 and 9
are rotated versions of each other in most fonts, they are
considered to be in the same class. A technique to clas-
sify between 6 and 9 using higher order spectral features is
described in a later section.

3. COMPARISON OF CLASSIFICATION
ACCURACY

This comparison was performed using 1% impulse noise in
both training and test data. 144 trispectral features were
extracted from each image. Similarly, 7 moment invari-
ants [8] and 4 a�ne invariant moments [10] were extracted
for the same data. All features were used and a 1-NN clas-
si�er was trained in each case. The results are therefore
indicative of the quality of the features in terms of discrim-
inating power and robustness to noise. They are indepen-
dent of the classi�er and of any feature selection process.

0 1 2 3 4 5 6 7 8
0 97.2 2.1 0.7
1 98.6 0.7 0.7
2 2.8 93.7 3.5
3 0.7 88.2 2.1 7.6 1.4
4 100
5 1.4 2.1 95.8 0.7
6 0.7 1.05 97.9 0.35
7 4.9 3.5 91.6
8 2.1 1.4 96.5

Table 1. Confusion Matrix for classi�cation using
the proposed trispectral features. Blank entries are
zeroes. Accuracies are in percentages.

0 1 2 3 4 5 6 7 8
0 83.3 1.4 0.7 0.7 4.2 1.4 5.6 1.4 1.4
1 92.4 2.1 2.1 2.8 0.7
2 0.7 0.7 88.2 7.6 1.4 1.4
3 4.9 70.1 6.3 9.7 7.6 1.4
4 4.9 1.4 7.6 82.6 2.1 1.4
5 4.2 0.7 9.0 68.8 14.6 2.8
6 3.1 2.4 0.7 5.9 81.3 1.4 5.2
7 1.4 2.1 7.6 5.6 81.2 2.1
8 0.7 1.4 1.4 11.1 0.7 84.7

Table 2. Confusion Matrix for classi�cation using
Hu's moment invariants.



0 1 2 3 4 5 6 7 8
0 34.7 4.2 5.6 11.8 4.2 4.2 18.1 7.6 9.7
1 3.5 45.8 8.3 3.5 1.4 4.2 8.3 21.5 3.5
2 6.2 9.0 35.4 11.1 4.2 19.4 9.7 6.9 2.8
3 10.4 4.2 15.3 43.7 2.8 12.5 5.6 1.4 4.2
4 6.9 2.1 8.3 3.5 25.7 13.2 24.3 4.9 11.1
5 9.7 2.1 13.9 12.5 15.7 25.7 16.7 0.7 6.9
6 9.4 5.6 3.8 2.4 9.7 6.9 46.2 5.2 10.8
7 5.6 22.2 2.1 2.8 3.5 10.4 46.5 4.9
8 11.8 2.1 2.8 0.7 7.6 7.6 19.4 5.6 43.8

Table 3. Confusion Matrix for classi�cation using
a�ne moment invariants.

4. COMPARISON WITH ARTIFICAL
NEURAL NETWORKS

4.1. Multilayer Perceptron

The Multilayer Perceptron (MLP) trained using backprop-
agation can be used for class�cation of digits but it does
not yield good results unless the input can be normalised
for translations and rotations. A lower resolution data base
of the same data used for testing trispectral and moment
features was created to compare with those obtained from
a fully connected MLP with one hidden layer. The 256x256
pixel images were low pass �ltered and decimated to yield
16 � 16 pixel grayscale images. The resulting images are
small enough to be input straight into an MLP without re-
quiring exorbitantly large number of interconnections and
consequently training times. The same testing procedure as
for the previous comparisons mentioned above was used to
obtain the confusion matrix shown in table 4. The results
con�rm the well known fact that the MLP cannot gener-
alize very well to large unseen translations and rotations
of a pattern. Most successful methods of digit and char-
acter recognition using MLPs normalize the input before
presenting to the network.

4.2. Modi�ed MLPs

Modi�ed MLPs such as the Le Cun architecture [11] have
obtained higher classi�cation accuracies for handwritten
digit classi�cation than those obtained with the proposed
trispectral features. However, they (a) require preprocess-
ing to normalize the inputs, (b) can only work with lower
resolution data at practical network sizes, (c) require train-
ing with large number of inputs, and (d) are not fully rota-
tion invariant.

0 1 2 3 4 5 6 7 8
0 58 11 6 8 3 11 3
1 3 31 3 8 6 6 3 36 6
2 11 19 8 11 6 6 19 19
3 6 11 8 8 17 3 25 22
4 8 3 58 8 6 17
5 6 11 6 11 17 6 31 14
6 7 8 10 6 13 15 10 7 25
7 8 8 6 3 72 3
8 3 3 6 25 14 11 6 33

Table 4. Confusion Matrix for classi�cation using
an MLP. Accuracies shown are in percentages.

4.3. Neocognitron

The Neocognitron [12, 13] achieves high classi�caton accu-
racies for digit recognition and is very robust to transla-
tions, scale changes, deformations in shape, noise and miss-
ing data. However, it is not completely rotation invariant.
It is also very computationally intensive, requiring tens of
million interconnections even for 19 � 19 pixel inputs. The
proposed trispectral feature extraction has an order of com-
plexity, roughly NsN log

2
NNf , where Ns is the number of

slices, N is the size of input, and Nf is the number of fea-
tures. For 32 � 32 inputs and 20 features, this is about
one tenth of a million. The Neocognitron is not inher-
ently suited for greyscale data with poor signal to noise
ratio, while the proposed features have excellent immunity
to greyscale data with noise.

5. CHANGING THE DIMENSION OF THE
TRISPECTRAL FEATURE VECTOR

To investigate the e�ects of changing the dimension of the
trispectral feature vector, fully connected MLPs with one
hidden layer were used. A di�erent MLP structure was
constructed for each feature vector dimension. These MLPs
were trained with two rotations and tested with two distinct
rotations. The 9 fonts were used and the digits 6 and 9 were
again combined into one class. The table below shows that
the dimension of the feature vector can be reduced from 144
to 10 with only a small reduction in accuracy.

No. of Features 5 10 20 50 144
Accuracy 74.3% 89.0% 87.8% 89.7% 92.9%

Table 5. E�ect of changing the dimension of the
trispectral feature vector.

6. CLASSIFICATION OF 6 AND 9

Full rotation invariant features cannot distinguish between
6 and 9. Higher order spectral features can be used to de-
cide between the two by using only one or two projections,
and the direct procedure described in section 1.1. Projec-
tions along the x axis or the y axis show di�erent types of
symmetry for 6 and 9.

Figure 3. Digit `6' in one of fonts with 1% impulse
noise.
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Figure 4. Projections along the x and y directions
for the image in �gure 3.



Figure 5. Digit `9' in the same font with 1% impulse
noise.
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Figure 6. Projections along the x and y directions
for the image in �gure 5.

The phase of the bispectrum changes sign when the in-
put changes from left-asymmetric to right-asymmetric. The
use of a single bispectrum value is susceptible to noise and
scale changes. The phase of the integrated bispectrum is
insensitive to these e�ects. The phase of the bispectrum of
projections along the x and y axes, integrated along the 45
degree line in bifrequency space was used for classi�cation
accuracy testing. The use of two projections takes care of
fonts for which the x axis projection may be symmetric. It
also permits a choice depending on the magnitude of the
imaginary part. By choosing the projection which yields
a larger imaginary part of the integrated bispectrum, the
decision is more robust to noise.
Classi�cation accuracy results for upright 6 and 9 in the

nine di�erent fonts for 1%, 2% and 5% impulse noise are
given below.

Noise level 1% 2% 5%
Error 1.11% 1.7% 7.8%

Table 6. Error in classi�cation of 6 and 9 using
bispectral features. The results are based on a test
of 180 upright images at each noise level.

7. CONCLUSION

A technique for extracting translation, rotation and scale
insensitive features from two dimensional patterns is pre-
sented and used for classi�cation of digits. The features
are shown to posses better discriminating ability and noise
immunity than moment invariants and a�ne moment in-
variants, on a common data base of digits in nine fonts.
The technique is superior to arti�cial neural network ap-
proaches in accommodating high resolution inputs and large

rotations, requiring less training and fewer computations.
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