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ABSTRACT

In this paper, computer-aided detection and enhancement

of microcalci�cations in mammogram images are consid-

ered. The mammogram image is �rst decomposed into

subimages using a 'subband' decomposition �lter bank

which uses nonlinear �lters. A suitably identi�ed subimage

is divided into overlapping square regions in which skewness

and kurtosis as measures of the asymmetry and impulsive-

ness of the distribution are estimated. All regions with high

positive skewness and kurtosis are marked as a regions of

interest. Next, an outlier labeling method is used to �nd

the locations of microcalci�cations in these regions. An en-

hanced mammogram image is also obtained by emphasizing

the microcalci�cation locations. Linear and nonlinear sub-

band decomposition structures are compared in terms of

their e�ectiveness in �nding microcalci�cated regions and

their computational complexity. Simulation studies based

on real mammogram images are presented.

1. INTRODUCTION

In this paper, computer-aided detection of microcalci�ca-

tions and enhancement of digital mammogram images are

considered. The presence of tiny calcium deposits in breast

tissues are an early sign of breast cancer in women. Since

microcalci�cations can be as small as 0:1mm � 0:1mm in

size, they can be easily overlooked by an examining radi-

ologist. Therefore, digitally enhanced mammogram images

will help the diagnosis process.

Recently a variety of schemes for the computerized detec-

tion of microcalci�cations, based on the wavelet transform,

have been proposed [1]-[3]. In these schemes, the mammo-

gram image is �rst passed through a subband decomposing

�lter bank. The subband images are weighted to enhance

the microcalci�cation locations, and a new image is recon-

structed from the weighted sub-images. In the detection

step, global and local gray-level thresholds are applied to

the reconstructed image to extract possible microcalci�ca-

tion locations. These locations are grouped to identify mi-

crocalci�cation clusters. In [1]-[3] the reconstructed image

essentially corresponds to a bandpass �ltered version of the

original mammogram image.

In our method the mammogram image is �rst decom-

posed into subimages using a nonlinear subband decomposi-

tion structure and the microcalci�cation detection is carried

out in the `subband' domain. The nonlinear decomposition

technique was recently proposed to compress images con-

taining sharp edges [5]-[8]. The technique is also suitable

for analyzing microcalci�cation locations which have also

sharp edges.

Statistical procedures for detection of the microcalci�ca-

tions are applicable after the decomposition stage. Since

microcalci�cations are small isolated regions in mammo-

grams they produce outliers in the highband signal (the

detail{image). The problem is then reduced to that of de-

tecting outliers in the detail{image component, obviating

the need for signal reconstruction. The detail{image is �rst

divided into overlapping square regions in which skewness

and kurtosis as measures of the asymmetry and impulsive-

ness of the distribution are estimated. A region with high

positive skewness and kurtosis is marked as a region of in-

terest. Then, the boxplot outlier detection method [4, 12]

is used to �nd the locations of the microcalci�cations in

susceptible regions.

The performance of the nonlinear subband decomposition

structure is also compared to that of regular �lter banks

employing linear �lters.

2. NONLINEAR IMAGE DECOMPOSITION

In this section, the nonlinear image analysis structure is

brie
y reviewed, and it is shown that the choice of the

nonlinear image decomposition structure, �lters and their

region of support should be determined according to the

characteristics of microcalci�cations.

The block diagram of a nonlinear signal decomposition

structure is shown in Figure 1 [8]. In this structure H and

G are nonlinear operators, and they produce the low-band

signal, ya, and the detail{signal, yd from the input signal x

as follows:

yd[n] = x2(n) +H(x1[n]) (1)

ya[n] = x1(n)�G(yd[n]) (2)

where x1(n) = x(2n� 1), x2(n) = x(2n) and

x1[n] = (x1(n�N1); : : : ; x1(n); : : : ; x1(n+N2));

yd[n] = (yd(n�N3); : : : ; yd(n); : : : ; yd(n+N4));

and N1; N2; N3; N4 are positive integers and they determine

the support region of the nonlinear �lters. The original sig-

nal x can be perfectly reconstructed from the analysis sig-

nals ya and yd, and the decomposition structure can be ex-

tended to two dimensions using either rectangular or quin-

cunx subsampling methods [9].



The dimensions of microcalci�cations vary in di�erent

mammogram images according to the scanning resolu-

tion. In the database we used, the scanning resolution is

100�m � 100�m hence, the microcalci�cations appear as

impulses of size varying from 1 pixel�1pixel to 10 pixel�10

pixel. Since 1 pixel�1pixel microcalci�cations can be re-

moved by downsampling operation, the structure in Fig-

ure 1 cannot be used in mammogram image analysis with

100�m � 100�m scanning resolution (It should be noted

that the regular subband decomposition structures such as

those in [1]- [3] can be used in image analysis, because the

linear �lters before the downsampling operation smear out

the 1 pixel�1pixel impulse and the information about it is

available in all of the subsignals). If the scanning resolution

is not su�cient then the downsampling operations should

be eliminated and the subimages ya and yd are obtained as

yd[n] = x[n]�H(x[n]); (3)

ya[n] = x[n] +G(yd[n]) (4)

where the nonlinear �lter H is chosen as a median �lter

with a 21 � 21 support. Such a �lter completely elimi-

nates impulsive microcalci�cation regions while retaining

the approximate base level. Therefore, the detail{signal yd
contains mainly microcalci�cations as shown in Figures 4{7

and the microcalci�cation locations can be determined us-

ing the statistical detection methods described in Section 3.

Other nonlinear �lters such as erosion and lower-� trimmed

mean type �lters can also be used for the H �lter. The non-

linear �lter G, on the other hand, can be selected so that

ya[n] is an enhanced version of the original image x[n]. This

enhancement method will be introduced in Section 4.

Nonlinear �lters such as median type �lters have been

previously used in the detection of microcalci�cations by

Chang et.al. [11]. In [11] the e�ects of linear and nonlinear

�lters and their region of support in the detection and en-

hancement of microcalci�cations are investigated through

ROC studies. In [11] a median �lter with a 9�9 support

is found to be most e�ective on mammogram images with

simulated microcalci�cations. However, such a median �lter

cannot eliminate all of the microcalci�cations in the mam-

mogram images of Nijmejgen database1 because the sizes

of the microcalci�cations may exceed the median �lter sup-

port region. The nonlinear �lter support should be deter-

mined according to the image scanning rate and the sizes

of microcalci�cations.

The median �lter with a support region containing N

samples requires `2N comparisons' to produce an output

sample. On the other hand, a linear phase FIR �lter re-

quires N/4 multiplications. Furthermore, the microcalci�-

cation detection process can be carried out over quarter or

half size images in regular subband decomposition struc-

tures. Therefore, the computational cost of a median �lter

based system is higher than an ordinary subband �lterbank.

3. STATISTICAL DETECTION METHOD

Microcalci�cations, tiny isolated regions in the mammo-

gram image, manifest themselves as outliers in the detail{

image. Hence, outlier detection techniques can be used to

1A set of mammogram images digitized by Nico Karssemeijer

of University Hospital Nijmegen, The Netherlands.
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Figure 1. Nonlinear Subband Decomposition Struc-

ture

detect the microcalci�cations [15]. In this paper, detec-

tion is carried out in two steps. First, the detail{image is

divided into overlapping square regions. In these regions,

skewness and kurtosis, measures of the asymmetry and im-

pulsiveness of the distribution are estimated. If a region has

high positive skewness and kurtosis then it is marked as a

region of interest. In the second stage an outlier labeling

method [4, 12] is used to �nd the locations of microcalci�ca-

tions in these regions. This two step procedure signi�cantly

decreases the computational complexity because instead of

searching the whole image for outliers only regions with high

susceptibility are processed by the outlier labeling method.

3.1. Skewness and Kurtosis Based Tests

Skewness and kurtosis are higher order statistical parame-

ters [13]. For a random variable x, the skewness is de�ned

as [14]


3 =
E[(x� E[x])3]

(E[(x� E[x])2])3=2
(5)

and is a measure of the symmetry of the distribution. An

estimate of the skewness is given by:


̂3 =

PN

i=1
(xi � m̂)3

(N � 1)�̂3
(6)

where m̂ and �̂ are the estimates of the mean and standard

deviation over N observations xi (i = 1; : : : ; N).

Similarly, for a random variable x the kurtosis is de�ned

as


4 =
E[(x� E[x])4]

(E[(x� E[x])2])2
� 3 (7)

and is a measure of the heaviness of the tails in a distribu-

tion. An estimate of the kurtosis is given by:


̂4 =

PN

i=1
(xi � m̂)4

(N � 1)�̂4
� 3 (8)

where m̂ and �̂ are de�ned as before. For the Gaussian

distribution 
3 and 
4 are equal to zero.

If a region contains microcalci�cations then due to the

impulsive nature of microcalci�cations the symmetry of

the distribution of detail{image coe�cients is destroyed as

shown in Figure 2 (a) and (c). It is also evident that the

tails of the distribution are heavier and hence the kurto-

sis assumes a high value. Therefore a statistical test based

on skewness and kurtosis is e�ective in �nding regions with

asymmetrical and heavier tailed distributions. The detec-

tion problem is posed as an hypothesis testing problem in

which the null hypothesis, Ho, corresponds to the case of

no microcalci�cations against the alternative H1:

� Ho : Microcalci�cations are not present in the region

� H1 : Microcalci�cations are present in the region.
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Figure 2. Sample value distributions in regions with

nonlinear subband decomposition (left column) and

with linear subband decomposition (right column)

This hypothesis testing problem is reduced to the following

decision rule � based on skewness and kurtosis

�(x) = f
0 
3 < T1 or 
4 < T2
1 
3 � T1 and 
4 � T2

(9)

where T1 and T2 are experimentally determined thresholds.

Once the regions containing microcalci�cations are deter-

mined by the above test, the locations of the microcalci�ca-

tions are estimated by the outlier labeling method described

in the next subsection.

In [15] a linear subband decomposition �lter bank is used

instead of the nonlinear subband decomposition structure of

Section 2. In Figure 2 (b) and (d) detail{image histograms

of two regions obtained with a linear structure are shown.

The region containing microcalci�cations has high skewness

and kurtosis values, too. Basically, the linear and nonlin-

ear structures both reveal the same information in terms

of their higher order statistical parameters. The computa-

tional complexity of the nonlinear subband decomposition

structure is high compared to that of the linear structure.

3.2. Boxplot Outlier Labeling Method

In this work, we used the so-called boxplot outlier label-

ing method [12]. In this method the data x is �rst rank

ordered, x = fx(1); x(2); :::::; x(n)g. Next, the median, the

lower quartile, Q1 and the upper quartile Q3 values are

determined [15]. The interquartile range RF is de�ned

to be Q3 � Q1. The boxplot method determines the out-

liers to be the part of data which is outside the region

(Q1 � kRF ; Q3 + kRF ). The parameter k is usually taken

to be 1:5 or 3:0. Figure 3 illustrates the boxplot outlier

labeling method.

4. MAMMOGRAM IMAGE ENHANCEMENT

It is desired that the microcalci�cations be readily notice-

able in an enhanced version of the original mammogram im-

age. Expression (4) shows that the image ya[n] is obtained

**  * *** **

Q MEDIAN Q Q + kR

* : OUTLIERS

1 F 1 3 3 F
Q - kR

Figure 3. Boxplot outlier labeling method de�ni-

tions
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Figure 4. (a) A horizontal line of the mammogram

image, (b) detail{image yd, (c) microcalci�cations

are enhanced (d) output of the outlier detection

method.

by superimposing the original with a nonlinear �ltered ver-

sion of the detail{image G(yd[n]). The image ya[n] can be

considered as an enhanced image for an appropriate selec-

tion of the nonlinear function G. A natural choice for G

would be based on the outlier detection scheme. In this ap-

proach, the microcalci�cation regions in yd[n] are detected

and reinforced. Another approach is predicated on amplify-

ing the pixel values of the original at the microcalci�cation

locations.

Figure 4 illustrates the steps of outlier detection and im-

age enhancement stages on a horizontal line of a mammo-

gram image. In particular, Figure 4 (a) depicts the origi-

nal line which is known to contain two microcalci�cations.

The di�erence between the original signal and its median

�ltered version is shown in Figure 4 (b). This di�erence

plot corresponds to the detail{signal, yd of the nonlinear

decomposition structure. The microcalci�cations are en-
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Figure 5. (a) A region of a mammogram image con-

taining microcalci�cations, (b) output of the detec-

tion scheme
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Figure 6. Enhanced Images (a) Microcalci�cations

are superimposed on the mammogram image, (b)

Mammogram image is magni�ed at the locations of

microcalci�cations
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Figure 7. Enhanced and contrast stretched images

(a) and (b) as de�ned in Figure 6.

hanced in Figure 4 (c). Figure 4 (d) illustrates the output

of the outlier detection scheme. In the detection, only the

detail{signal, yd, is used. Figure 5 (a) shows a part of a

mammogram image with a cluster of microcalci�cations. In

Figure 5 (b), the output of the microcalci�cation detection

scheme is shown. Figure 6 illustrates the enhanced images

for two approaches: superimposition and magni�cation.

In case enhancement of the tissue around the microcalci-

�cation regions is also desired, the �nal image can be dis-

played after scaling so that the full dynamic range of the

display device is employed. Figure 7 shows the results of

such a contrast stretching algorithm.

In these �gures the microcalci�cations are successfully

detected and mammogram images are enhanced. Addition-

ally, the processing is simple, and does not require a full

decomposition and reconstruction.

5. CONCLUSION

In this paper, automatic detection of microcalci�cations in

mammogram images is considered. The mammogram im-

age is �rst processed by a nonlinear subband decomposi-

tion �lter bank. Microcalci�cations, tiny, isolated regions,

produce outliers in the detail{image. Next, the the detail{

image is divided into overlapping square regions in which

skewness and kurtosis are estimated. These higher order

statistical parameters are measures of the asymmetry and

impulsiveness of the distribution. Therefore a region with

high positive skewness and kurtosis is marked as a region of

interest. Finally, an outlier labeling method is used to �nd

the locations of microcalci�cations in these regions.

Subband decomposition structures both using linear and

nonlinear �lters are also examined. Both structures are suc-

cessful in identifying regions with microcalci�cations. The

computational complexity of the linear subband decompo-

sition structure is low compared to the nonlinear subband

decomposition structure.
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