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ABSTRACT

The performance of subband image coders depends on
proper choice of �lter banks. Although odd length �lters
in the �lter banks produce waveform type artifacts, this
can be alleviated by enforcing a smooth interpolation prop-
erty to the synthesis lowpass �lter. Evaluation of even,
odd, and combinations of even and odd length �lters in
tree-structured �lter banks, where the �lter coe�cients are
obtained by optimizing for coding gain at each stage, is done
for image coding purposes. Favorable results are obtained
when a combination of odd and even length �lters are used.

1. INTRODUCTION

Subband coding of highly correlated sources like speech and
image signals have been studied extensively in the past.
For image compression, decomposition by nonunitary �lter
banks with nonuniform frequency separation is better than
unitary or nonunitary uniform �lter banks. One possible
candidate for nonuniform �lter banks is a tree-structured
system. The discrete wavelet transform constitutes a sub-
class of this construction.
Tree-structured �lter banks, if correctly optimized, can

alleviate some of the typical artifacts experienced in sub-
band coding, notably ringing when the �lters' unit sample
responses are long, and blocking in the case of short re-
sponses. High frequency resolution at low frequencies and
lower frequency resolution at higher frequencies represent a
good compromise in terms of the coders' ability to cope both
with large areas of constant spectral contents, i.e., visually
stable areas, and transients. If odd length �lters are used
to construct tree-structured �lter banks, waveform type ar-
tifacts are often observed in areas of constant spectral con-
tents. Hence, appropriate �lters in tree-structured �lter
banks for image compression must be carefully selected and
optimized.
In this paper, we propose a smooth interpolation crite-

rion for odd length synthesis lowpass �lters, and investigate
all possible combinations of both odd and even length �l-
ters upto a certain length in tree-structured �lter banks for
subband image compression.

2. TWO-CHANNEL FILTER BANKS

Two-channel nonunitary uniform �lter banks are used to
construct tree-structured �lter banks. To guarantee perfect
reconstruction through the analysis-synthesis system, con-
straints among the �lter coe�cients have to be enforced.
The system is then completely free of aliasing, amplitude,
and phase distortions. Polyphase representation, invented
by Bellanger et al. [1] in multirate systems, introduced

an e�cient method of implementing �lters, especially �lter
banks. The perfect reconstruction property of a decimated
�lter bank can be guaranteed by using the polyphase matri-
ces [2]. Assume that P(z) and Q(z) denote decimated anal-
ysis and synthesis polyphase matrices, respectively. Perfect
reconstruction is obtained if

Q(z) = cz
�kP�1(z); (1)

where c is an arbitrary constant and k is an integer. Then,
the reconstructed signal becomes equal to a scaled and de-
layed version of the input signal. By using FIR analysis
�lters, FIR synthesis �lters are obtained by setting appro-
priate terms to zero in the determinant of P(z). For the
two-channel case, the �lter relationships are: GLP (z) =
HHP (�z) and GHP (z) = �HLP (�z) where H(z) and G(z)
denote analysis and synthesis �lters, respectively.
Linear phase perfect reconstruction two-channel �lter

banks consist of either even or odd length �lters. The syn-
thesis lowpass �lter, GLP (z), known as the interpolation
�lter, interpolates the lowpass samples from the analysis
lowpass �lter to produce areas containing slowly varying sig-
nals. Hence, the l1-norms of the even and the odd polyphase
components of the synthesis lowpass �lter need to be equal
in order to alleviate waveform type artifacts. The l1-norms
of the even and the odd polyphase components are equal
in even length �lters. However, this is not true in the case
of odd length �lters. Therefore, in odd length �lters an ad-
ditional constraint among the �lter coe�cients needs to be
enforced so that the even and the odd polyphase compo-
nents have equal l1-norm. This additional constraint forces
the analysis highpass �lter to have at least one of its zeros
at 0, i.e., the synthesis lowpass �lter has at least one of its
zeros at �. This attributes to better dc leakage suppression.
Good peak signal-to-noise ratio (PSNR) is observed when
similar constraints are also imposed to the analysis lowpass
or the synthesis highpass �lter.
In this survey, we restrict the sum of the �lter lengths in

the two-channel case to be less than or equal to 20 where
the maximum length of a channel cannot exceed 12. Ta-
ble 1 gives the possible combinations for both even and odd
length �lter banks where the sum of the lowpass and the
highpass �lter lengths is a multiple of 4, if linear phase
and perfect reconstruction properties are required. Includ-
ing the trivial combination of 2/2, the number of possible
distinct �lter banks in this case amounts to 29.

3. TREE-STRUCTURED FILTER BANKS

Perfect reconstruction octave-band two- and three-stage
tree-structured �lter banks (OTFB) are constructed by two-
and three sets of two-channel �lter banks in cascade form,



Table 3. Building blocks of OTFBs.

Symmetrical/asymmetrical even length OTFBs

Analysis �lter bank Synthesis �lter bank

FB
No:of LP taps

No:of HP taps
Total no. of taps Total no. of taps

No:of LP taps

No:of HP taps

S-1 S-2 S-3 HP BP2 BP1 LP LP BP1 BP2 HP S-3 S-2 S-1
FB 60 44 16 10 2/10 12/8 10/6 10 16 44 60 44 60 32 2 6/10 8/12 10/2

FB 52 36 24 10 6/10 2/10 12/8 10 24 36 52 56 72 12 6 8/12 10/2 10/6

Asymmetrical odd length OTFBs

FB 25 21 7 9/7 9/7 - 7 21 - 25 19 - 23 9 - 7/9 7/9

FB 7 11 5 3/5 3/5 - 5 11 - 7 13 - 9 3 - 5/3 5/3
FB 59 35 15 9 11/9 3/9 9/11 9 15 35 59 65 57 13 11 11/9 9/3 9/11
FB 57 49 21 7 9/7 9/7 9/7 7 21 49 57 43 51 23 9 7/9 7/9 7/9
FB 47 55 27 9 11/9 3/9 9/11 9 27 55 47 65 57 13 11 11/9 9/3 9/11

FB 33 25 21 7 5/7 7/9 5/3 7 21 25 33 31 39 19 5 3/5 9/7 7/5

Asymmetrical even/odd length OTFBs

FB 24 12 12 8/12 9/3 - 12 12 - 24 16 - 28 8 - 3/9 12/8

FB 56 40 24 12 8/12 3/9 12/8 12 24 40 56 56 72 16 8 8/12 9/3 12/8
FB 54 38 22 10 6/10 3/9 12/8 10 22 38 54 54 70 14 6 8/12 9/3 10/6

respectively, where the lowpass channel in each stage is split
into two subchannels. The main objective here is to con-
struct OTFB allowing both odd and even length �lters. In
order to avoid ringing and blocking artifacts, proper length
of �lters are needed. All possible distinct two-stage, three-
stage, and four-stage �lter banks are given in Table 2. The
total number of �lter banks at each stage is given by 29L,
where L is the number of stages. Generally, the total num-
ber of �lter banks at any stage can be found by ML, where
M is the total number of destinct two-channel �lter banks,
and L is the number of stages.

Table 1. Possible combinations of two-channel �lter
banks.

No: of LP taps=No: of HP taps

12/8 12/4 10/10 10/6

10/2 8/8 8/4 6/6

6/2 4/4 11/9 11/5

9/7 9/3 7/5 5/3

Table 2. Number of possible �lter banks.

Type 2-stage 3-stage 4-stage

Even length FBs 289 4913 83521

Odd length FBs 144 1728 20736

Even/odd length FBs 408 17748 603024

Total 841 24389 707281

4. OPTIMIZATION OF THE FILTER
COEFFICIENTS

Construction of linear phase perfect reconstruction OTFBs
by using two-channel �lter banks are presented in the pre-
vious section. To guarantee linear phase and perfect recon-

struction in two-channel �lter banks, a number of relations
amoung the parameters are established. The remaining de-
grees of freedom are used to obtain the �lter coe�cients
by optimizing for subband coding gain at each stage. The
coding gain is a common used measure for data compres-
sion ability [3]. A compact formula to evaluate the gen-
eralized subband coding gain for nonunitary nonuniform
�lter banks can be found in [4]. From our experimental
results, the underlying statistics of an image can be approx-
imated as an AR(1) process with nearest sample correlation
� = 0:95. Hence, the maximum one-dimensional theoretical
coding gain equals 10.11 dB [3]. However, if the �lters are
only optimized in the �rst stage and then employed in other
stages, the average nearest sample correlation of the input
signal can be approximated to 0.80. Hence, in this sur-
vey, we have optimized the �lter coe�cients in two-channel
�lter banks for � = 0:80. Fine tuning of the coe�cients
at each stage is done for an input process with � = 0:95
after selecting the \best" �lter bank according to its prac-
tical coding gain (PSNR). The \optimization toolbox" in
MATLAB is used to maximize the coding gain to obtain
the one-dimensional �lter coe�cients. Assuming separabil-
ity, the two-dimensional �lter bank is constructed from a
one-dimensional �lter bank.

5. CODING SCHEME

Our objective here is to compare di�erent types of �lter
banks for image coding purposes. Hence, the quantization
and the coding scheme should be identical for all types of
�lter banks in order to do a fair comparison test.
A good and fast approach to code the subband image by

Said et. al [5] has received much attention lately. The
method is an extension of embedded zero tree wavelet
(EZW) coding introduced by Shapiro [6]. The main in-
gredients of the coding scheme, as described in [5], can be
summarized into three concepts as follows: 1) the partial
ordering of the subband coe�cients by magnitude with a
set partitioning sorting algorithm, 2) the ordered bit plane
transmission of re�nement bits, and 3) the exploitation of
self-similarity of the subband image across di�erent bands.



Table 4. Coding gains for AR(1), � = 0:95.

FB Coding gain (dB)

FB 60 44 16 10 9.444

FB 52 36 24 10 9.492

FB 25 21 7 8.698

WL1 25 21 7 8.469

FB 7 11 5 6.372

FB 59 35 15 9 9.506

FB 57 49 21 7 9.527

WL1 57 49 21 7 9.459

FB 47 55 27 9 9.462

FB 33 25 21 7 9.418

FB 24 12 12 8.757

FB 56 40 24 12 9.455

FB 54 38 22 10 9.425

6. CODING RESULTS

Our aim is to �nd the \best" combination of �lters in
octave-band three-stage �lter banks. This means that all
possible 24389 combinations must be examined for some
given, hopefully representative, images and choose the
\best" performer. However, this requires a vast amount
of computer resources and seems to be an impossible task
within a short period of time. Hence, we �rst approach this
problem by examining all those 841 possible �lter banks for
a two-stage system, and select the \best" 40 �lter banks.
Then, the chosen �lter banks are extended from two-stage
to three-stage. In this way, we reduced the number of com-
binations to 1160 (340-even length, 240-odd length and 580-
even/odd length) �lter banks.
Two 512 � 512 images \Lenna" and \Barbara" (source:

ftp.eedsp.gatech.edu) are used to characterize the coding
performance of the �lter banks. To determine the perfor-
mances of the �lter banks, we compared them with the well
known 9/7 wavelet �lter bank, given in [7].
Table 3 lists the most interesting combinations found

from our simulation test based on PSNR. Table 4 pro-
vides the corresponding theoretical subband coding gain.
Figure 1 depicts the advantage of enforcing the smooth-
ness property to an odd length �lter bank, FB 33 25 21 7.
(W(O)SI - with(out) smoothness property.) It is clear that
this property enhances both the subjective and the objec-
tive coding performances. The \best" coding performance
was obtained for a two-stage system by FB 24 12 12, and
the results are shown in Figures 2(a) and (b). The �lter

bank performs better than wavelet �lter bank WL1 25 21 7.
To validate our claim that �lters in �lter banks need to have
appropriate lengths, the performance curve for the \worst"
performer, FB 7 11 5, is also shown in Figure 2.
Based on our a priori knowledge by assessing the coding

results for two-stage �lter banks, 1160 di�erent �lter banks
are selected in a three-stage system. Table 5 provides the
\best" coding performances for \Lenna" and \Barbara".
We observe the following from this table: the 9/7 gain opti-
mized, at each stage, �lter bank (FB 57 49 21 7) performs

1Coding gain for the case of wavelet �lter bank is found by
using the �lter coe�cients in an AR(1) model where � = 0:95.

better than its counterpart namely the 9/7 wavelet �lter
bank. Both have the same number of �lter coe�cients at
each stage, however, the �lter coe�cients di�er owing to
di�erent optimization criteria. Filter banks combining odd
and even length �lters tend to perform equally well.

7. DISCUSSION AND CONCLUSIONS

By testing all possible combinations (841) for two-stage �l-
ter banks does not necessarily mean that the �lter bank
reported here is the \optimum". The performance of �l-
ter banks for image compression is based on the following
concepts: 1) the �lter combinations at each stage, 2) the op-
timization criteria of the �lters, and 3) the coding scheme.
A good way of �nding the �lter coe�cients is to optimize
to the statistics of the image at hand. However, the AR(1)
model tends to be a good compromise. Here, for three-
stage �lter banks, only 1160 out of 24389 were tested. And
from our simulation results for \Lenna" and \Barbara", we
conclude that the \optimum" for this system was none of
those in 1160. This is due to the fact that the 9/7 combina-
tion was not amoung the \best" found in the test. Hence,
one has to conduct an exhaustive search of all 24389 pos-
sible combinations to �nd the \best" �lter bank. This will
give us an idea of �nding the \best" combination for the
four-stage system. Examining all 707281 �lter banks seems
as an impossible task if a priori knowledge from two-and
three-stage systems are not available.
According to [8] even length �lter banks are better at pre-

serving location, shape, and intensity of impulses than odd
length �lter banks. However, from our simulation results
based on PSNR and subjective comparisons, odd length �l-
ters having the smooth interpolation property perform as
good as even length �lters. Hence, they should be consid-
ered in constructing �lter banks for image coding purposes.
Furthermore, combinations of both odd and even length �l-
ter banks are attractive and should be considered in future
systems.
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Table 5. Coding results for three-stage �lter banks.

"Lenna" \Barbara"

FB Bpp vs. PSNR in dB Bpp vs. PSNR in dB

0.10 0.30 0.50 0.70 1.00 0.10 0.30 0.50 0.70 1.00

FB60 44 16 10 29.13 34.32 36.73 38.29 40.11 - - - - -

FB 52 36 24 10 - - - - - 23.44 27.63 30.76 33.13 36.02

FB59 35 15 9 28.83 34.21 36.78 38.31 40.17 - - - - -

FB 47 55 27 9 - - - - - 23.53 27.63 30.62 32.96 35.74

FB57 49 21 7 29.07 34.54 37.00 38.56 40.33 23.48 27.92 31.12 33.50 36.25

WL57 49 21 7 28.80 34.45 36.93 38.54 40.28 23.49 27.78 30.94 33.32 36.09

FB56 40 24 12 28.85 34.31 36.79 38.33 40.16 - - - - -

FB 54 38 22 10 - - - - - 23.52 27.88 31.15 33.46 36.30
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Figure 1. FB 33 25 21 7 WSI (�), and FB 33 25 21 7 WOSI (�). (a) \Lenna" and (b) \Barbara".
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Figure 2. FB 24 12 12 (�), WL 25 21 7 (�), and FB 7 11 5 (�). (a) \Lenna" and (b) \Barbara".


