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ABSTRACT

We introduce a new method for size and orientation nor-
malization of unconstrained handwritten words based on
the Hough transform. A modified Hough transform is ap-
plied to extremum points along the y coordinate to extract
parallel lines corresponding to the boundary lines separat-
ing different vertical zones of the handwritten word. One di-
mensional Gaussian smoothing with variable variance is ap-
plied in the Hough space to alleviate the problems caused by
the large variation in natural handwriting and the sparse-
ness of extremum points. The method has been tested with
and incorporated into an HMM based writer-independent,
unconstrained on-line handwriting recognition system and
a 25% error rate reduction has been achieved.

1. INTRODUCTION

Preprocessing of on-line handwriting can be classified into
two types: noise reduction and normalization. Noise re-
duction attempts to reduce imperfections caused mainly by
hardware limits of electronic tablets, through operations
such as smoothing, wild point reduction, hook removal, etc.
Normalization refers to the reduction of geometric varia-
tions introduced by the writer and typically includes orien-
tation normalization (baseline correction), size normaliza-
tion (core height correction) and deskewing (slant correc-
tion) [1]. For unconstrained handwritten words, the nor-
malization of orientation and size are by far the most dif-
ficult tasks among the ones mentioned above, and will be
the main focus of this paper.

To facilitate further discussion, we first define four bound-
ary lines for a handwritten word, which include: the base
line (joining the bottom of small lower-case letters such as
“a”); the core line (joining the top of small lower-case let-
ters); the ascender line (joining the top of letters with ascen-
ders such as “17), and the descender line (joining the bottom
of letters with descenders such as “g”). Orientation nor-
malization involves estimating the orientation of the word,
usually through base line detection, and rotating it to the
horizontal level, while size normalization involves estimat-
ing the core height (the distance between the base line and
core line) of the word and rescaling it to a standard length.
These two tasks are closely related: a good estimate of core
height relies on accurate estimation of the orientation. Both
tasks become very difficult for unconstrained handwritten
words, where the boundary lines are often not well defined,
as shown in Fig. 1.

Various techniques have been developed in the past to
tackle this difficult problem. The main approaches include
the histogram based methods [2, 3, 1, 4], linear regression
based methods [5], and model based methods [6]. In this pa-
per we describe a new approach based on the Hough trans-
form. First, local maximum and minimum points along the
y coordinate are extracted, then a modified Hough trans-

Figure 1. A handwritten word whose boundary
lines are not well defined.

form 1s applied to extract parallel lines corresponding to
the boundary lines. In order to handle the problems caused
by the large variation in natural handwriting coupled with
the sparse nature of extremum points in each word sample,
one-dimensional Gaussian smoothing with adjustable vari-
ance is applied in the Hough space, followed by parameter
refinement using linear regression. Compared with previ-
ous techniques, the Hough transform based method has the
advantage that it simultaneously provides the optimal es-
timates of both the orientation and the core height of an
input word. The method has been tested with our HMM
based writer-independent, unconstrained on-line handwrit-
ing recognition system [7] and a 25% error rate reduction
has been achieved.

In the next section we give a brief description of the mod-
ified Hough transform. In section 3 we describe in detail
how to apply Hough transform to detect boundary lines of
handwritten words. Experimental results are provided in
section 4, and we conclude in section 5.

2. MODIFIED HOUGH TRANSFORM

The Hough transform [8] is now a well known method for
identifying patterns in the presence of noise. Unlike re-
gression or Bayesian methods, the Hough transform will
completely ignore pattern outliers.

The most commonly treated problem in the literature is
the detection of a straight line in a noisy image, however,
in principle any pattern can be transformed. In its simplest
form we consider the transformation of the linear equation

y=maz+b (1)

from the pattern space (z,y) to the Hough parameter space
(m, b). For each point (z,y) in the pattern space, we gather
evidence for a particular line (or set of lines) in the param-
eter space by quantizing the parameter space into an array
of accumulator bins and incrementing bins for all values of
(m, b) that satisfy (1). The resulting accumulation of counts
is representative of an estimate of probabilities of the line
parameters taking on the corresponding values. Thus, a
single point in pattern space transforms to a line in param-
eter space. A set of points on a single line in pattern space
transforms to a pencil of lines intersecting (approximately)
at a single point that represents the most likely value of
(m, b) for the line in pattern space.



One difficulty with this method arises when m become in-
finite. To handle this problem, other transformation func-
tions are used such as a circular mapping or a sinusoidal
mapping [9]. We use the sinusoidal Hough transform from
(z,y) to (p,8):

p=mxcosf —ysind. (2)
where a line through point (z,y) is specified by the angle
6 and length p of its normal from the origin. Equation (2)
can also be written as an integration kernel

h(z,y,p,0) = I(z,y)6[z cosd + ysin§ — p]. (3)

where [ is the image magnitude in the pattern space and
delta 1s the Dirac delta function that is normally integrated
into a sinusoidal string of accumulator bins. Typically [
is binary valued taking on unit value at points on image
lines. An accumulator bin thus receives a unit count where
singularities appear in h.

Practical considerations prevent this method from being
applied to arbitrary pattern functions. The most common
difficulty 1s the size of the accumulator array can be very
large when there are many parameters and/or when high
resolution on one or more of the parameter values is re-
quired.

There is also a necessary compromise between parameter
resolution and noise sensitivity. While it is desirable to
estimate parameters with high precision, thus dictating a
high resolution accumulator, care must also be taken that
noise does not so widely scatter the accumulated counts in
the neighborhood of the most likely parameter values that
no single bin dominates in the neighborhood. This latter
difficulty is compounded when the input pattern is sparsely
sampled, yielding few counts in the parameter space, as is
the case in our current work. Hence it is also desirable to
lower the resolution to obtain higher accumulator counts.

One method for addressing this tradeoff is to take a prob-
abilistic view of the pattern space and correspondingly the
parameter space. To motivate and ground this probabilis-
tic notion in the real world we can assume that each mea-
surement in the Euclidean pattern space is independently
noisy and each pattern point can be represented by an inde-
pendent identically distributed probability density function.
For optical patterns we can also point out that the opti-
cal transfer function, when applied to each pattern point,
yields a point spread function that has similar smoothing
properties. The physical justification is not very important,
and we will depart from this justification later in choosing
other smoothing functions, but the resulting effect on the
transformation process is important because it allows us to
handle noise at higher resolution.

Replacing the image function I(z,y) in (3) with a radial
basis function yields non-isotropic smoothing in the param-
eter space since the Hough transformation is nonlinear. The
effect of this modification is more easily seen by rewriting
the integration kernel (3):

1
2

h(z,y,p,0) = I(x,y)&[(x2 + y2) cos(f — tan_l(%)) -l

(4)
which is easily obtained after some algebraic manipulation,
to show the non-linear affect of (z, y) on (p, ). The absolute
and relative values of = and y affect both the magnitude
and phase of the cosine component. Thus, a radial basis
smoothing function is transformed into an approximately
elliptical function with major axis alternately oriented along
the p axis and 6 axis throughout the parameter space.
While in principle we can compute this modified trans-
form, the computation is expensive. We can also approx-
imate the effect while saving considerable computation by
applying a one-dimensional smoothing operation in the pa-
rameter space. We chose to implement this smoothing oper-
ation by applying Gaussian smoothing in the p dimension

Figure 2. Sample containing backtrack strokes.

only. In our implementation the normally integer valued
accumulator bins are replaced by real valued bins and the
transformed function is smoothed before incrementing the
bin values. Various methods of determining the variance of
the Gaussian have been tested and are discussed in detail
in the next section.

3. BOUNDARY LINE EXTRACTION USING
HOUGH TRANSFORM

The modified Hough Transform is applied to extract bound-
ary lines among points of ¥y maxima and minima of a given
handwritten word. First, a search is performed through
the sample points to find consecutive pairs of y maxima
and minima. These extrema are selectively chosen to re-
duce the number of “spurious points”. For example, pairs
making up small peaks are considered noise and are not
included in the final set of extrema; pairs which form rel-
atively long horizontal segments are also ignored as they
are usually ligatures between letters and do not contribute
significant information about the boundary lines.

Another type of spurious extrema are formed by back-
tracking strokes in cursive handwriting. For example, the
sample “cargo” shown in Figure 2 contains backtracks in
the letters “c”; “a” and “g” which create minimum points
forming a false base line. A heuristic was developed to iso-
late these types of minimum points so they can be removed
from the data set. The strokes between a maximum and its
corresponding minimum are considered one segment, as are
the points between that minimum and the following maxi-
mum. If the curvature of the first segment is positive and
that of the second segment is negative, and both curvatures
are significant, the segments are searched for a cusp. If a
cusp exists in the region of the minimum point, a backtrack
is assumed to exist and the misleading minimum point is
removed from the data. Both maximum points are retained
as they lend support to each other for locating the appro-
priate core line.

The final set of extremum points are called pattern points.
Since each of the boundary lines is formed by either maxi-
mum points or minimum points, the sets of maximum and
minimum points are transformed to two separate Hough
accumulator arrays (maximum accumulator and minimum
accumulator) to avoid unnecessary confusion. The bin sizes
for the arrays need to be chosen carefully. On the one hand,
they should be fine enough to distinguish the potential as-
cender line (descender line) from the core line (base line).
On the other hand, the bins must also be coarse enough to
accurately cluster the data while accommodating noise and
natural variation of handwriting. Our experiments show
that the choice of bin size for p is more crucial than that for
8. Several different methods for computing the bin size for
p were tested, including varying the bin size according to
the length of the word; varying the bin size according to an
initial estimate of the core height of the word based on the
median of the y differences between maxima and minima;
and simply using a constant bin size regardless of the size of
the input. Interestingly, the best performance was achieved
using a constant bin size which was empirically estimated
from a large number of samples.

As explained in the previous section, one-dimensional
Gaussian smoothing is applied in the p dimension to alle-
viate problems caused by noise, quantization error and the
lack of data points. For each point (z;,y) in the pattern



space, the increment for bin [6;, px] is computed as:

2
_ (pr=rij)
.2

(5)
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where
pi; = Ticosf; — y;sinb;, (6)

and o;; is the variance of the Gaussian kernel applied to
point (xi, yi) for angle 6;. We shall call h(x;, y;, 85, px) the
contribution of point (z;,y;) to bin [6;, px].

When smoothing is applied in the pattern space, the
smoothing deviation o;; varies throughout the Hough pa-
rameter space, as discussed in the previous section. It can
be estimated in various ways depending on the smoothing
model chosen. In the simplest case, o;; is assigned a con-
stant oo for all + and 5. The result is that the sinusoids of
the Hough space appear to experience less smoothing in the
6 direction near the 8 axis (p &~ 0) because we are smooth-
ing only in the p dimension and because of the high slope
of the (p,6) function in this region. We call this the cosine
effect.

In an alternative implementation that addresses the co-
sine effect, o;; is computed as:

04y 200(1‘1‘771']2)% (7)

where 7;; = %hu = —xz;sin §; — y; cos §;. The effect of (7)
is to increase the smoothing operator variance in regions
where |dp/36| is high. Intuitively, while the transforma-
tion is not truly isotropic, the result is to approximate this
transformation so that the sinusoid is uniformly dilated in
the parameter space.

In yet another implementation, we depart from the no-
tion of physical justification and assume that y; follows a
Gaussian distribution with variance o, in the pattern space
while z; remains fixed, thus o;; is:

oi; = oysin §;. (8)

This results in larger smoothing variance in regions of the
Hough space representing nearly horizontal pattern lines
(6 close to %) and small variance in regions representing

nearly vertical lines (8 close to 0 or m). This effect, taken
together with the sparse nature of our data, results in the
enhanced detection of nearly horizontal pattern lines and
has the effect of suppressing lines that are nearly vertical,
which are rare as boundary lines since most handwritten
words have a nearly horizontal orientation. We have exper-
imented with all of the above three methods and the third
method demonstrated the best performance.

Aside from accuracy, another concern in performing the
Hough transform is how to reduce the amount of computa-
tion. In a straightforward implementation of the transform,
for each pattern point (z;,y;) and each quantized angle §;
within the range [0, 7], the center p;; is computed using
(6), then the contribution h(z;,y:,8;, px) is computed us-
ing (5) for each py inside a window of predetermined length
L centered at p;;. We shall refer to the computation of the
center p;; along with the corresponding L contributions as
one transform operation. Suppose the number of quantiza-
tion levels for {8 : 6 € [0,x]|} is M, and an input sample
has N pattern points, then the transform operation is ap-
plied N x M times for this sample. There are two possible
methods to reduce the amount of computation.

The first method takes advantage of the fact that the
amount of pattern points for most words is small (usually
fewer than 30). If instead of examining each quantized angle
for each pattern point, we only examine a small number D
of quantized angles close to angles of lines formed by pairs
of maximum (minimum) points, then the number of the

transform operation to be applied becomes N x N x D). This
could lead to significant reduction of computation if N x D
is much smaller than M. However, our experiments indicate
that due to the large variation in natural handwriting, this
scheme tends to result in heavy compromise in performance
with little reduction in computation.

The second, more effective method is to first obtain a
rough estimate of the orientation of the word using a sim-
ple and fast procedure (e.g., linear regression), compute the

angle 6 of the normal to this orientation, then restrict the

range of 6 to [ — ¢,0 + @], where ¢ is the estimated confi-
dence margin of the initial estimate. This method not only
reduces the number of transform operations to be carried
out for each pattern point, but also reduces the range of
angles to be searched later for the boundary lines. In our
experiments using linear regression to provide the initial es-
timate, little degradation in performance is observed when
the value of ¢ i1s as small as 15 degrees, while the amount
of computation is reduced to one-sixth of the original.

After the Hough transform is completed, the two accumu-
lator arrays are searched for parallel lines at each quantized
angle as potential boundary lines. Since a word sample
always contains the base line and core line, while it may
or may not contain the ascender line or descender line, we
search for the top two strongest peaks in the p histogram
corresponding to each angle in each accumulator array. The
presence of the ascender (descender) line is determined by
comparing the counts at the peaks. If only one peak is
found, or the second peak is much weaker (i.e., has much
lower count) than the first one, then it is assumed that there
is no ascender (descender) line in the sample. If on the other
hand, two peaks of comparable strength are found, then it is
assumed that the ascender (descender) line is present, and
the identity of each of the two parallel lines is determined
by their relative position (the line closer to the center of the
word is the base line or core line). The combined strength of
an angle §; is defined as the sum of the counts of the high-
est peaks in the p histogram for §; in the two accumulator
arrays. The angle with maximum combined strength is cho-
sen to be the optimal angle. Fig. 3(a) shows a sample word
“bluet”, whose core line and ascender line are of comparable
strength, and Fig. 3 (b) shows the p histograms of the sam-
ple at the optimal angle, with two peaks in the maximum
accumulator and one peak in the minimum accumulator.

Once the optimal angle and the corresponding bins for
the base line and core line are identified in the above man-
ner, one could simply use the # and p values at the center
of each bin as parameters for these two lines and normalize
the input sample accordingly. However, since both p and ¢
have been rather coarsely quantized, this approach results
in poor accuracy. One method to increase the effective res-
olution is to apply quadratic interpolation to several bins
near the chosen bin and search for the precise peak position
which may not necessarily be at the center of the chosen
bin. We have instead chosen to use a simpler procedure,
double linear regression, to refine the parameter estimates.

Suppose that (z.(¢), yc(i)) is the set of maximum points
with large contributions to the chosen bin for the core line,
and (z5(7),ys(J)) is the set of minimum points with large
contributions to the chosen bin for the base line. The fol-
lowing double linear regression procedure is applied to fit a
line through each of the two sets of points, with the con-
Et]raint that the two resulting lines are parallel to each other
5]

y1=az1+b1; y> =azz + b (9)

where

‘= T1-Y1 + T2 Yo —T1y1 — T2Y2
- =2 | =2 ’
T10 + T2 — 212 — 322

b1 =y1 — aT1;
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Figure 3. A sample word containing equally domi-
nant core and ascender lines, and its p histograms
at the optimal angle.

Figure 4. A handwritten word and the estimated
base line and core line.

b2 :y_g—aﬁ.

Since the position of the extrema could be slightly shifted
after orientation correction, further improvement on accu-
racy is achieved by rotating the sample to horizontal posi-
tion using the above estimates, recomputing the double lin-
ear regression using the new extrema, and iterating through
this procedure until the parameters converge (usually after
2 iterations).

Fig. 4 illustrates the estimated base line and core line of
the word sample shown in Fig. 1.

4. EXPERIMENTAL RESULTS

The Hough transform based size and orientation normaliza-
tion algorithm has been tested on an HMM based on-line
handwriting recognition system called AEGIS [10], designed
for writer-independent recognition of unconstrained hand-
written words. Four features were used in the experiments:
tangent slope angle, y coordinate, normalized curvature and
ratio of tangents. The first two features are directly affected
by the normalization process, while the last two are invari-
ant under both scaling and rotation [11]. The decoding of
an input sample is carried out in two steps: constrained
N best decoding followed by rescoring using segmental fea-
tures and refined delayed stroke modeling [12].
Experiments were carried out using unconstrained hand-
written lower-case word samples from 56 writers. The mod-
els were trained using about 5000 samples from 40 writers.

The test set contains 125 samples from each of the other 16
writers, totaling 2000 samples. The words were drawn ran-
domly from a 25,000 word dictionary. A lexicon of 1905
words, covering all unique words in the test set, was ap-
plied in recognition. The test samples exhibit a wide range
of core heights (from 1.2mm to 8.4mm) and orientations
(up to 25 degrees away from the horizontal). In comput-
ing the modified Hough transform, a constant bin size of 1
degree for ¢, and 1.2mm for p were used . When no size
or orientation normalization was applied, we obtained an
error rate of 16.4%. After applying Hough transform based
size and orientation normalization, the error rate dropped
to 12.0%, yielding an over 25% error rate reduction.

5. CONCLUSION

We have described a new on-line handwritten word nor-
malization algorithm base on a modified Hough transform.
Compared with previous methods, this new algorithm has
the advantage that it simultaneously provides optimal esti-
mates for both the orientation and core height of an input
sample. Experiments using this normalization method with
an HMM based recognizer yielded substantial reduction in
error rates.
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