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ABSTRACT

Two methods for transmission of a continuous amplitude
source signal over a continuous amplitude channel with a
power constraint are proposed. For both methods, band-
width reduction is achieved by mapping from a higher
dimensional source space to a lower dimensional channel
space. In the �rst system, a source vector is quantized
and mapped to a discrete set of points in a multidimen-
sional PAM signal constellation. In the second system the
source vector is approximated with a point in a continu-
ous subset of the source space. This operation is followed
by mapping the resulting vector to the channel space by
a one-to-one continuous mapping resulting in continuous
amplitude channel symbols. The proposed methods are
evaluated for a memoryless Gaussian source with an ad-
ditive white Gaussian noise channel, and o�er signi�cant
gains over previously reported methods. Speci�cally, in the
case of two-dimensional source vectors, and one-dimensional
channel vectors, the gap to the optimum performance the-
oretically attainable is less than 1.0 dB for a wide range of
channel signal-to-noise ratios.

1. INTRODUCTION

In this paper, we consider the problem of transmitting a
discrete time continuous amplitude source signal over a
discrete time, continuous amplitude channel with a power
constraint. The channel is assumed to include a modula-
tor, the waveform channel, and a soft decision demodulator
with continuous amplitude output. Furthermore, we as-
sume an additive white Gaussian noise (AWGN) channel.
For a given channel signal-to-noise ratio (CSNR), the task
is to �nd a mapping from the source space to the chan-
nel space such as to minimize the distortion between the
original and the received source signal.

A similar problem was considered in [1, 2, 3]. In [1], the
optimum linear continuous mapping from the source space
to the channel space was derived given the source and the
channel statistics. In [2], a discrete system was considered,
where the encoder mapping consisted of a vector quantizer
(VQ) followed by a linear mapping from the VQ centroids
to some discrete points in the channel space. At the receiver
side, a linear map from the channel space to the source space
was used. As pointed out in [2], the resulting mean squared
error (mse) of this system is bounded from below by the
mse of the system in [1]. Finally, in [3] the channel symbols
were restricted to points in a regular multidimensional pulse

amplitude modulation (PAM) signaling alphabet, and the
encoder consisted of a VQ followed by an index assignment
function between the source and the channel space. At
the receiver side, the channel output vector was mapped to
an index which was used to select a decoded vector from
a codebook of reconstruction vectors. This optimization
problem can be formulated as a power constrained channel
optimized vector quantization (PCCOVQ) problem and is
solved by the generalized Lloyd algorithm (GLA).

There are two contributions of this paper. First, the PC-
COVQ system in [3] is improved by choosing a good ini-
tial codebook for the GLA-based PCCOVQ training and
by optimizing the scaling of the signal constellation within
the GLA. Second, the performance is improved further by
allowing for continuous amplitude channel symbols. This
is achieved by replacing the discrete set represented by the
PCCOVQ reconstruction vectors with a continuous subset
of the source signal space. Thus, the source vector is ap-
proximated by a vector in the continuous subset. The re-
sulting vector is then mapped to the channel space by a
one-to-one continuous mapping.

2. THEORY

2.1. General Problem Formulation

Assume that the source signal to be encoded is a real-
valued, discrete time, and stationary random process Xi,
with zero mean, variance per symbol �2x, and symbol rate
fs. The source signal is to be transmitted over an AWGN
channel with a power constraint Pmax, using real-valued
discrete time symbols with symbol rate fc � fs. Let x
be an L-dimensional vector derived from Xi according to
x = (xnL; xnL+1; :::; xnL+L�1). The source vector x is
mapped to a K-dimensional vector y of channel symbols
by an encoder function � : RL ! R

K, where the relation-
ship between L and K is given by L=K = fs=fc � 1.

When transmitted over the channel, the vector y is cor-
rupted by an additive noise vector n, generated by an inde-
pendent and identically distributed (iid) Gaussian process
with zero mean and variance �

2
n per sample. Finally, the

received vector ŷ = y+n is processed by the decoder func-
tion � : RK ! R

L to produce the reconstructed vector x̂.
This communication system is illustrated in Figure 1.

With the mean squared distortion measure, the general
optimization problem can be formulated as follows. Given
the source probability density function (pdf) pX(x) and the
values of L, K, and �2n, choose the encoder mapping � and
the decoder mapping � such as to minimize the distortion
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Figure 1. General communication system.

D = E[kx � x̂k2]=L subject to a power constraint P =
E[kyk2]=K � Pmax. The expectations are taken over both
the source and the noise pdfs.
The system performance will be evaluated in terms of the

source signal-to-noise ratio (SNR)

SNR = 10 log10(�
2
x=E[kx� x̂k2]=L) (1)

versus the channel signal-to-noise ratio (CSNR)

CSNR = 10 log10(P=�
2
n): (2)

2.2. Discrete Amplitude System

First, we consider the case of discrete amplitude chan-
nel symbols. In particular, the channel symbols are re-
stricted to belong to the Cartesian product of a regular
K-dimensional M -ary PAM signaling alphabet. The dis-
crete amplitude system is illustrated in Figure 2.
The source encoder maps the vector x to an index i in

an index set I = f0; 1; :::;N � 1g. The source encoder is
speci�ed by a partition P = f
0;
1; :::;
N�1g of R

L, and
the index i is selected whenever x 2 
i. Next, the signal
selection unit maps the index i to the corresponding channel
symbol y = � � si 2 S where the signal set S � RK is
the K-fold Cartesian product of an M -ary PAM signaling
alphabet with minimum distance equal to one, and � is
a scale factor. At the receiver side, the signal detection
unit chooses an index j such as to minimize kŷ �� � sjk

2,
j 2 I. Finally, the source decoder maps the index j to the
corresponding reconstruction vector x̂ = cj belonging to a
�nite subset C = fc0;c1; :::;cN�1g where ci 2 R

L. We will
refer to the subset C as the reconstruction codebook. For
this system, the optimization problem can be expressed as
that of minimizing

F (P;�;C) =

N�1X
i=0

Z

i

p(x)di(x)dx; (3)

where

di(x) =

N�1X
k=0

P (kji) kx� ckk
2 + ��2ksik

2 (4)

with respect to P, �, C. Here, P (kji) is the probability of
receiving index k given that index i was transmitted, and
� is the Lagrange multiplier chosen to satisfy the power
constraint.
For a given set of transition probabilities and reconstruc-

tion codebook, it was shown in [3] that the optimum parti-
tion P is given as


i = fx : di(x) � dj(x) 8j 6= ig; i = 0; :::;N�1: (5)

Furthermore, for a given partition and transition probabili-
ties, the reconstruction vectors ci; i = 0; 1; :::;N � 1 can be
expressed as [3]

ci =

PN�1

k=0
P (ijk)

R

k

xpX(x)dxPN�1

k=0
P (ijk)

R

k

pX (x)dx
; i = 0; :::;N�1:

(6)

We will refer to the encoder/decoder structure of the dis-
crete amplitude system as power constrained channel op-
timized vector quantization (PCCOVQ). Note that for an
optimization problem without a power constraint, Equa-
tions 5 and 6 correspond to those of conventional COVQ
[4] (� = 0). If, in addition, the channel is noiseless, the
resulting encoder/decoder structure is a conventional VQ.
For a given value of �, the proposed system is designed

using a variation of the GLA as follows:

� Select an initial value of �, and an initial reconstruc-
tion codebook C.

� Update the partition P according to Equation 5.

� Update the reconstruction codebook C according to 6.

� Update � using an iterative search routine to minimize
the expression of Equation 3.

� Compare the current distortion (Equation 3) with the
distortion of the previous iteration to check for con-
vergence. If not, continue from the second step above,
otherwise stop.

Note that this method for optimizing the PCCOVQ system
di�ers from the method in [3] since in our work, � is opti-
mized within the iterative algorithm. In [3], � was chosen
to depend on Pmax, but not necessarily in an optimal way.
Another important issue is the index assignment which is

the matching of the reconstruction vectors ci with the signal
set vectors si. As pointed out in [4], the index assignment
is a by-product of the COVQ design algorithm. Thus, if a
global optimum is reached, no further gain can be achieved
by rearranging the reconstruction vectors ci. However, the
iterative algorithm guarantees only a local minimum which
might be dependent on the index assignment chosen for the
initial set of reconstruction vectors.
In this work, this problem is addressed by use of the noisy

channel relaxation method, originally developed for a BSC
[5, 6]. Adapting this technique to the problem at hand, the
system is initially optimized for a very low CSNR value,
with the following choice of initial codebook vectors

ci(m) =

�
ksi(m) if 0 �m � K�1
ksi(K�1) if K �m � L�1

(7)

where ci(m) and si(m) are the m'th components of the vec-
tors ci and si respectively, and k is a scale factor. Thus,
the initial reconstruction vectors lie in a K-dimensional sub-
space of RL. Next, the CSNR is increased in small steps
towards the target CSNR (= Pmax=�

2
n). For each interme-

diate CSNR value, a full iterative algorithm is performed
using the reconstruction codebook from the previous CSNR
as the initial codebook for the current CSNR.

2.3. Continuous Amplitude System

The continuous amplitude system is illustrated in Figure 3.
In this case, the source vector x is approximated by a vec-
tor ~x in a continuous subset of RL. As described below, the
continuous subset is speci�ed by the N reconstruction vec-
tors of the discrete amplitude system. Next, the vector ~x is
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Figure 2. Discrete amplitude system.
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Figure 3. Continuous amplitude system.

mapped by a one-to-one continuous mapping to the chan-
nel symbol y. At the receiver side, the decoder maps the
received vector ŷ to the reconstructed vector x̂ by a contin-
uous mapping from RK to RL. In this paper, we consider
the cases K = 1 and K = 2 only.
An example of the encoder and decoder operations are

illustrated in Figure 4 for L = 2, K = 1, and N = 4. As-
suming that the N reconstruction vectors from the discrete
amplitude system are given, the approximated source vector
~x is found by mapping x onto one of the line segments con-
necting two codebook vectors that correspond to neighbors
in the channel space. Next, the channel symbol y is found
by mapping to the corresponding line segment in the chan-
nel space. At the decoder side, the reconstructed vector x̂
is derived from the channel output vector ŷ by performing
the inverse mapping from the channel space to the source
space. Similarly, the case L = 3, K = 2, and N = 16 is
illustrated in Figure 5. In this case, the one-to-one mapping
is de�ned by mapping a triangle in the source space to the
corresponding triangle in the channel space.
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Figure 4. Mapping for continuous amplitude sys-
tem, L = 2, N = 4, and K = 1.
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Figure 5. Mapping for continuous amplitude sys-
tem, L = 3, N = 16, and K = 2.

3. RESULTS

In Figure 6 typical PCCOVQ codebook structures for a
zero-mean unit-variance iid Gaussian source are shown for
di�erent CSNR values. The codebook structures possess
two properties that are crucial for power e�cient and ro-
bust transmission. First, points that are close in the channel
space correspond to points that are close in the source space.
Second, the reconstruction vectors having the highest prob-
ability correspond to channel symbols having the smallest

amplitudes. Note that there is nothing in the GLA-based
optimization algorithm that explicitly speci�es the spiral
shape of the mappings. In Figure 7, the performance is
shown for L = 2, K = 1, and for various values of N . The
results are compared against the optimum performance the-
oretically attainable (OPTA) which is determined by eval-
uating the distortion-rate function at the channel capac-
ity. Note that for a given CSNR, increasing the number
of reconstruction vectors always results in increased per-
formance. In Figure 8 the performance with channel mis-
match is illustrated. Here, the actual CSNR is di�erent
from the design CSNR (CSNRd). The performance com-
pared to other methods is illustrated in Figure 9. Finally,
in Figures 10 and 11, the performances of the discrete and
the continuous amplitude systems are compared. As can
be seen from the results, the continuous amplitude system
o�ers a signi�cant gain over the discrete amplitude system,
at high CSNR values.
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Figure 6. Reconstruction codebook vectors for L=
2, K=1, and N=256. The line segments connect two
codebook vectors (o) which are mapped to neighbor
points in the channel space. Upper left: CSNR = 0
dB, upper right: CSNR = 10 dB, lower left: CSNR
= 20 dB, lower right: CSNR = 50 dB.

4. CONCLUSIONS

Two di�erent methods for bandwidth compression of con-
tinuous amplitude source signals have been proposed. Both
methods o�er a signi�cant gain compared to previously re-
ported methods. The proposed methods perform close to
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Figure 7. SNR vs. CSNR for L = 2, K = 1, and for
various values of N . From top to bottom: OPTA,
N = 256, N = 64, N = 16, and N = 4.
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Figure 8. SNR vs. CSNR for PCCOVQ with chan-
nel mismatch, L=2, N=64, K=1. From top to bottom
at CSNR=40 dB: OPTA, system optimized for true
CSNR, CSNRd=0 dB, CSNRd=10 dB, CSNRd=20
dB, CSNRd=30 dB, and CSNRd=40 dB.

the OPTA bound, and o�er graceful degradation for chan-
nel mismatch situations. Thus, the proposed techniques are
well suited for transmission of sound and video signals in
mobile communication and broadcasting systems.
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Figure 9. SNR vs. CSNR for L = 2, N = 256,
K = 1. From top to bottom: OPTA, discrete am-
plitude system (PCCOVQ with optimization of �),
PCCOVQ from [3], linear system [1] (performance
results from [3]).
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Figure 10. Comparison of discrete and continuous
amplitude systems, L = 2, N = 256, K = 1. From top
to bottom: OPTA, continuous amplitude system,
discrete amplitude system (PCCOVQ).
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Figure 11. Comparison of discrete and continuous
amplitude systems, L = 4, N = 256, K = 2. From top
to bottom: OPTA, continuous amplitude system,
discrete amplitude system (PCCOVQ).


